I-95 Express Lanes - Opitz Boulevard Ramp ("Opitz") Project

Exhibit C-6 Technical Requirements

Attachment 3.4a
Opitz Project Geotechnical Report

__Transurban

Interstate-95 Express Lanes
OPITZ BOULEVARD CONNECTION
PRINCE WILLIAMS COUNTY, VIRGINIA
STATE PROJECT # 0095-076-299, P101, C501
UPC# 116663

GEOTECHNICAL REPORT

WRA W/O # 045893.001 REVISION 3 MARCH 25, 2022

TABLE OF CONTENTS

1.	Intro	duction	1
2.	Proje	ct Site and Proposed Construction	1
3.	Geolo	ogy	2
4.	Revie	ew of Historic Data	2
5.	Subst	ırface Investigation	3
	5.1.	SPT Borings for Structures	4
	5.2.	Pavement Area Test Borings	5
6.	Soil I	Laboratory Testing	5
7.		ription of Subsurface Conditions	
	7.1.	General Stratigraphy	7
	7.2.	Groundwater Conditions	8
	7.3.	Design Soil Parameters	9
	7.4.	Seismic Site Classifications	9
8.	Reco	mmendations for Retaining Walls and Modified Slopes	9
	8.1.	MSE Wall 2 at Abutment C	10
	8.2.	MSE Walls for T-Ramp	10
	8.3.	RW-3 Retaining Wall at Abutment B Approach (Southeast Quadrant)	12
	8.4.	Soldier Pile and Lagging (SPL) Wall at West Approach (Southwest Quadrant)	13
	8.5.	Sliver Fill at East Approach (Northeast Quadrant)	13
9.	Foun	dation Recommendations	14
	9.1.	Validation of Historic Borings	14
	9.2.	Design Recommendations for Driven Piles.	15
	9.3.	Pile Drivability and Dynamic Testing	16
10.	Paver	ment Recommendations	16
	10.1.	Opitz Boulevard Widening	16
	10.2.	Pavements for T-Ramp and Express Lanes	17
	10.3.	MOT Use of Shoulder Pavements	19
	10.4.	Subgrade Preparation and Construction Considerations	19
	10.5.	Subgrade Preparation for Storm Drain at T-Ramp Sta. 23+10	20
11	Refer	rences	20

LIST OF TABLES

Table 4.1: Summary of Historic Test Borings	2
Table 5.1: Summary of Structural Test Borings	4
Table 5.2: Summary of Pavement Test Borings	
Table 6.1: Summary of Soil Classification Test Results	6
Table 6.2: Summary of Proctor and CBR Test Results	7
Table 6.3: Consolidation Test Results Summary	7
Table 7.1: Summary of Groundwater Readings	8
Table 7.2: Summary of Design Soil Parameters	9
Table 8.1: Design Parameters for Retaining Walls	9
Table 8.2: Summary of Wall Conditions and Estimated Strap Lengths	10
Table 8.4: Summary of Settlement Calculations	11
Table 8.5: Compression Loads and Bearing Resistances for RW-3 Walls	12
Table 9.1: Validation of Historic Borings for Foundation Design	14
Table 9.2: Summary of Estimated Pile Tips for Proposed Bridge Elements	15
Table 10.1: Existing Pavement Section at Opitz Boulevard	16
Table 10.2: Opitz Boulevard – Recommended New Pavement	17
Table 10.3: Existing Pavement Section - I-95 Express Lanes	17
Table 10.4: I-95 Express HOT Lanes – Recommended New Pavement	18

APPENDICES

Appendix A – Figures

- A.1 Site Vicinity Map
- A.2 Test Hole Location Plan
- A.3 Selected Plans Bridge Elements
- A.4 Selected Plans MSE & SPL Retaining Walls
- A.5 Cross Sections MSE Walls
- A.6 Cross Sections Sliver Fill & RW3 Wall
- A.7 Cross-Sections SPL Wall

Appendix B – Historic Data Review Memo

Appendix C – Subsurface Investigation Records

- C.1 Test Borings Summary
- C.2 Test Boring Logs
- C.3 DCP Logs
- C.4 Pavement Core Records

Appendix D – Laboratory Test Results

Appendix E - Calculations

- E.1 Seismic Stie Classification, Overburden Correction
- E.2 MSE Wall Calculations: Wall 1, Wall 2 and Wall 3
 - E.2.1 Wall 2 External Stability and Bearing Resistance
 - E.2.2 Wall 2 Settlement Analysis at Abutment C
 - E.2.3 Walls 1 & 3 Back to Back MSE Check
 - E.2.4 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
 - E.2.5 Walls 1 & 3 Settlements @ Sta.24+50 (19' Wall)
 - E.2.6 Walls 1 & 3 Slope Stability @ Sta.24+50 (19' Wall)
 - E.2.7 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
 - E.2.8 Walls 1 & 3 Settlements @ Sta.22+50 (10' Wall)
 - E.2.9 Walls 1 & 3 Slope Stability @ Sta.22+50 (10' Wall)
 - E.2.10 Walls 1 & 3 Consolidation Settlement at Sta.23+50
- E.3 RW-3 Gravity Retaining Wall
 - E.3.1 VDOT RW-3 Specifications
 - E.3.2 DCP Friction Angle and Compactness
 - E.3.3 AASHTO Bearing Capacity
 - E.3.4 AASHTO Reduction Factor for Footing on Slope
- E.4 Soldier Pile and Lagging (SPL) Wall
 - E.4.1 Section and Embedment Design
 - E.4.2 Top Deflection Estimations
- E.5 Abutment and Pier Piles
 - E.5.1 DRIVEN Analysis
 - E.5.2 Typical LPILE Analysis
 - E.5.3 Typical WEAP Analysis Results
- E.6 MOT Pavement Sections
 - E.6.1 Pavement Analyses
 - E.6.2 Record Drawings

1. Introduction

The Interstate 95 reversible High Occupancy-Toll (HOT) facility is maintained and operated by Transurban in the median of interstate I-95. The facility stretches from south of Garrisonville Road in Stafford County to north of Edsall Road in Fairfax County. The proposed improvements consist of adding an access ramp to create direct access to the Express Lanes from Opitz Blvd. The project is in Woodbridge, Prince Williams County, Virginia. A site vicinity map is included in Appendix A.

Whitman, Requardt, and Associate, LLP. (WRA) was tasked to provide a geotechnical investigation program for the proposed spot improvement project. The project elements include: a retaining wall supporting T Ramp to I-95 Express Lanes from Opitz Boulevard, a new abutment at the bridge to connect to the new T-ramp and associated widening to the existing Opitz Boulevard bridge abutments and piers. This report provides a summary of the geotechnical investigation, subsequent study, and design recommendations.

The study includes the following: review and summary of available existing geotechnical data; summary and review of the subsurface investigation and laboratory test results; and geotechnical analysis and recommendations for the project, which elements include: back-to-back Mechanically Stabilized Earth (MSE) wall for the T-Ramp, deep foundations of abutment and pier expansions, a post and panel retaining wall, gravity retaining wall, and widened embankment to support the expansion along Opitz Blvd. As part of the recommendation development, a memo was developed earlier for review of available historic geotechnical data and as-built foundation elements of the existing bridge. This memo is included in Appendix B of this report.

2. Project Site and Proposed Construction

Improvements on Opitz Boulevard include a new eastbound right turn lane (requiring bridge widening) and new westbound left turn lane (to be built within the existing median), both of which would only be open during southbound operations, with access managed by gates. This new reversible ramp will be controlled by a new traffic signal on Opitz Boulevard between the existing signals at Telegraph Road and at River Rock Way. During northbound operations, the ramp will provide northbound 95 Express Lane users the opportunity to exit onto Opitz Boulevard near Potomac Mills mall and Sentara Northern Virginia Medical Center. During southbound operations, the ramp will provide a new entrance from Opitz Boulevard onto the southbound 95 Express Lanes. The proposed ramp will be located in the existing median between the southbound 95 General Purpose (GP) lanes and the 95 Express Lanes.

The following main elements were identified for the Geotechnical investigation.

<u>Widening of the Opitz Boulevard Bridge on East Bound</u>: Both Abutments and three piers will be expanded. Selected bridge drawings are attached in Appendix A.

<u>Widening of East and West Approach to the Bridge</u>: Two retaining walls are proposed for the widening: a soldier pile and lagging wall at the west approach; and a RW-3 type gravity wall on the east approach. Selected drawings and cross-sections are provided in Appendix A.

New T-Ramp and Associated MSE Walls: New abutment, Abutment C is proposed on the east side of the bridge to receive the T-Ramp to the south. Drawings detailing the ramp grade separation MSE walls; Wall-1, Wall 2, and Wall 3, are included in Appendix A.

<u>Pavement Improvements:</u> Pavement improvements include new pavement for the T-Ramp, slip ramp modifications, and Maintenance of Traffic (MOT) pavement sections during construction.

Attached drawings in Appendix A include the proposed construction and the and associated soil test boring locations.

3. Geology

WRA obtained information about the geologic setting of the Opitz Boulevard project from the Geologic Map of the Washington West 30- by 60-minute Quadrangle, Maryland, Virginia, and Washington D.C., which is U.S. Geological Survey Open-File Report OF-2017-1142 by P. T. Lyttle and several other authors.

The project is in the region of Virginia where layers of mostly non-lithified sediments of the coastal plain sequence rest on top of Piedmont crystalline bedrock. The surficial coastal plain material in the area belongs to the Potomac Formation. The Potomac Formation contains interbedded units of sand and clay that were originally deposited by streams in the Cretaceous Period of earth history. Underneath the Potomac Formation is bedrock and decomposed bedrock. The rock is obscured at the site by coastal plain sediment, however the bedrock mapped by the USGS nearest to the Opitz Boulevard project is metamorphic rock of Ordovician age. Data from several borings that penetrated decomposed graphitic schist in the project area. The reported occurrence of schist is generally consistent with the USGS map.

4. Review of Historic Data

We have reviewed the historic data available on existing Opitz Blvd as part of the study. A total of nine test boring results and as-built records of deep foundation consisted of driven HP 10x42 steel beam piles for bridge structures were available for the review from the following Virginia Department of Transportation (VDOT) reference.

 As Built Plans, Titled "Proposed Bridge on Opitz Blvd. over Tte.95, Ramp G & N.B.C.C RD., Prince William Co.-0.4 Mi N. Int. Rte 642, Proj. 0095-076-112, B636," Commonwealth of Virginia, Department of Highway and Transportation, dated October 24, 1979

A total of nine (9) historic Standard Penetration Test (SPT) test borings were provided in the as-built plans. A summary of the borings is provided in the following table.

Table 4.1: Summary of Historic Test Borings							
				Boring	g Grades	Ground	Decomposed
Structure	Traffic Lane ⁽¹⁾	Boring No.	Station & Offset	Top EL (ft.)	Bottom EL (ft.)	water EL (ft.)	Rock ⁽²⁾ EL (ft.)
Abutment	W.B.L.	1	Sta.65+44; 15' LT	194.5	174.0	181.7	184.0
Α	E.B.L.	2	Sta.65+44; 15' RT	193.1	172.2	179.9	182.6
Pier 1	W.B.L.	4	Sta.66+52; 10' LT	193.1	172.9	180.0	178.1

	Table 4.1: Summary of Historic Test Borings							
011	Traffic	Boring	Otation & Office	Boring Top	g Grades Bottom	Ground water	Decomposed Rock (2)	
Structure	Lane (1)	No.	Station & Offset	EL (ft.)	EL (ft.)	EL (ft.)	EL (ft.)	
Pier 2	W.B.L.	6	Sta.68+10; 10' LT	178.4	157.7	170.0	167.9	
	E.B.L.	5	Sta.68+10; 10' RT	179.5	148.7	168.6	169.0	
Pier 3	W.B.L.	8	Sta.69+78; 10' LT	172.7	147.3	166.7	162.7	
	E.B.L.	7	Sta.69+77; 20' RT	172.7	151.7	166.7	163.7	
Abutment	W.B.L.	10	Sta.70+18; 13' LT	169.8	144.7	167.0	165.3	
В	E.B.L.	9	Sta.70+18; 20' RT	169.6	153.4	166.0	165.1	
Notes: (1)	Abbreviation	ns: W.B.L.	- West Bound Lane; E.B.L.	– East Bou	ınd Lane.			
(2)	(2) Decomposed rock identified in the boring logs generally indicates an SPT blow-count (blows per foot) greater							

The test boring logs and the review results are provided in a WRA memo dated September 22, 2021, and which is included as Appendix B.

5. Subsurface Investigation

than 50.

A total of twenty-five (25) Standard Penetration Test (SPT) borings were performed for the current project, to supplement the historic geotechnical data. The borings were drilled for the design of bridge structures, retaining walls and pavements. The drilling was performed by Soil and Land Use Technology (SaLUT), Inc., from Glenburnie, Maryland, from September 2021 to November of 2021. Full time inspection and logging of the soil borings soil borings was provided by WRA.

The test boring locations were staked by H&B Surveyors. The borings were advanced using hollow-stem augers and soil samples were recovered from the borings at 2.5 feet interval for the top 20 feet and at 5 feet intervals thereafter. The soil samples were recovered by driving a Standard Penetration Test 1 3/8-inch ID (2-inch OD) split-spoon sampler in accordance with ASTM D-1586 specifications. The sampler was first seated about 6 inches to penetrate through the loose cuttings and then driven an additional 1 foot with blows of a 140-pound automatic hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is typically designated as the Standard Penetration Resistance (N) value. The penetration resistance is an index of the soil's strength, density, and behavior under applied loads. Soils obtained from the sampling device were sealed in glass sample jars and transported to our soils testing laboratory. The recovered soil samples were inspected and identified by the WRA Geotechnical Engineer per Unified Soil Classification System (USCS). Bulk samples were taken at selected boring locations. For borings taken in roadways, pavement cores were obtained in selected borings. One undisturbed sample was obtained via a Shelby tube at selected at Boring B-A3-4. In addition to test borings, four (4) Dynamic Cone Penetrometer (DCP) testing WRA personnel performed and logged DCP testing using Corp of Engineers DCP equipment.

Test holes were in two general areas: along Opitz boulevard and along High Occupancy-Toll (HOT) lane facility. Following are the boring numbers with boring identification (name) for each area of the site.

- 9 borings along Eastbound Opitz Boulevard, along the area to be widened. These borings are numbered as B-A1-1 to BA-A1-4, B-A1-6, and B-PE-1 to B-PE-2. The PE borings were to obtain pavement cores along with one SPT sample at the east end of the existing bridge. It is noted that a planned boring B-A1-5 was cancelled due to utility conflict and replaced with a DCP-SW hole. A summary of these borings is provided in Table 5.1.
- 16 borings were drilled within the Transurban managed High Occupancy-Toll (HOT) lane facility. The boring numbers are B-A2-1, B-A3-1 to B-A3-9, and B-A4-1 to B-A4-8. These borings were drilled for widening of Opitz Blvd, and Maintenance of Traffic (MOT) within HOT facility. Table 5.2 summarizes these borings.

The test location plans for test borings and DCP are included in Appendix A. SPT boring logs, DCP logs, and pictures of pavement core are included in Appendix C.

5.1. SPT Borings for Structures

The following is a summary of test borings drilled for the design and recommendations of bridge structures and retaining walls.

	Table 5.1: Summary of Structural Test Borings									
Structure	Boring	Bori	ng Location	(3)	Ground	Boring	Ground water	Notes		
Otructure	ID	Ref.	Station	Offset	EL ⁽³⁾ (ft.)	Depth (ft.)	Depth (ft.)	Notes Shelby @14'		
SPL	B-A1-3	Opitz Blvd	63+75	59 RT	209.4	30.0	N/E			
Wall (2)	B-A1-4	Opitz Blvd	64+75	73 RT	203.9	28.8	23.5			
Abut. A	B-A1-5	Opitz Blvd	64+75	55 RT	214.0		Note (1).			
Abut. B	B-A1-6	Opitz Blvd	70+30	46 RT	211.6	75.0	56.0			
Abut. C	B-A2-1	T-Ramp	27+10	20 RT	188.0	59.0	23.5			
T-Ramp	B-A3-1	T-Ramp	26+00	20 RT	187.0	40.0	20.0			
MSE	B-A3-2	T-Ramp	25+00	12 LT	189.2	40.0	20.7			
Wall	B-A3-3	T-Ramp	24+00	23 RT	185.4	30.0	19.5			
&	B-A3-4	T-Ramp	23+50	6 LT	187.2	30.0	22.0	Shelby @14'		
Roadway	B-A3-5	T-Ramp	22+00	35 RT	183.5	20.0	N/E			
	B-A3-6	T-Ramp	21+00	2 LT	184.9	20.0	N/E			
	B-A3-7	T-Ramp	19+99	33 RT	181.6	15.0	N/E			
	B-A3-8	T-Ramp	19+00	4 LT	181.1	10.0	N/E			
	B-A3-9	T-Ramp	17+99	29 RT	179.9	10.0	N/E			

Notes

- (1) Boring B-A1-5 was cancelled due to utility conflict. Results from Boring B-A1-4 and DCP-SW are utilized to verify existing historic boring results.
- (2) SPL Soldier Pile and Lagging wall at the south slope of the west approach behind Abutment A.
- (3) Stationing and elevations are interpolated from the drawings. Borings were staked per drawing coordinates.

5.2. Pavement Area Test Borings

Summary of pavement borings are provided in the following table, Table 5.2. These borings are drilled for Opitz Boulevard widening and for Maintenance of Traffic (MOT). These boring include and pavement cores at each hole with at least one SPT sample. It is noted that the pavement thickness information included in the structural borings were also used for pavement recommendations.

			Т	able 5.2: \$	Summary	of Pavem	ent Test E	Borings		
			Borin	g Location	(1)			Pa	avement (Core
Area		ring D	Lane	Station	Offset	Ground EL ⁽²⁾	Boring Depth	HMA Depth	Sul	obase
				(ft.)	(ft.)		(ft.)	(inch)	Depth (inch)	Material
Opitz	B-A	\1-1	EB Decel	63+25	41 RT	212.5	15.0	12.0	4	CRA
Blvd	B-A	\ 1-2	Lane	64+25	41 RT	214.2	20.0	11.0	7	CRA
	B-F	PE-1	EB	70+75	50 RT	209.8	3.2	4.5	10.5	CRA
	B-F	PE-2	Outside Shoulder	71+25	52 RT	208.1	3.2	3.0	11	CRA
I-95	B-A	44-1	I-95 XBL East	727+80	17 RT	186.1	8.0	14.0	10	CRA
НОТ	B-A	\4-2	Shoulder	724+55	17 LT	183.0	8.0	17.0	8	CRA
Facility	B-A	\4-3	I-95 XBL	721+55	18 RT	180.2	8.0	17.0	8	CRA
	B-A	\4-4	I-95 XBL West Shoulder/ Gore to Gates	718+64	18 LT	179.0	8.0	15.0	9	CRA
	B-A	\4-5	I-95 XBL	686+81	18 LT	172.1	8.0	16.0	9	CRA
	B- <i>A</i>	44-6	East Shoulder	682+81	18 RT	168.3	8.0	15.0	10	CRA
	B-A	\4-7	I-95 XBL West	672+06	18 LT	149.8	8.0	16.0	9	CRA
	B-A	\4-8	Shoulder	668+56	18 LT	140.3	8.0	15.0	33	CRA
Notes	(1)	Statio	ning and elevation	ons are interp	olated from	the drawings.	. Borings we	re staked p	er drawing o	coordinates
	(2)		ndwater was not of Crushed Aggreg		in pavemer	t test borings	listed herein.			

Photographic logs of the pavement are included in Appendix C.

6. Soil Laboratory Testing

Soil samples recovered from the field explorations were transported to our soil laboratory and select soil samples were subjected to various testing to determine additional engineering characteristics of the existing on-site soils. Laboratory tests that were conducted on selected soil samples included natural moisture content tests, Atterberg Limits, consolidation, pH and resistivity, and sieve analysis tests. All tests were

performed at SaLUT's AASHTO certified laboratory or a certified laboratory subcontracted by SaLUT. The results of the classification tests are summarized in the following table.

		Table 6.1: Sur	nmary of Sc	oil Classificati	on Test Resu	lts	
Boring ID	Sample No	Depth	Moisture Content	Liquid Limit	Plasticity Index	Percent Fines	USCS
		(ft.)	(%)	(%)	(%)	(%)	
B-A1-1	S3	6.0 - 7.5	30.0	68	41	76	СН
B-A1-2	S5	11.0 - 12.5	26.6			76	
B-A1-3	Bulk	1.5 - 8.0	1.4	44	22	38	SC
B-A1-3	S3	5.0 - 6.5	13.9			25	
B-A1-6	Bulk	1.5 - 8.0	7.0	77	58	26	SC
B-A1-6	S6	13.5 - 15.0	15.6	35	11	23	SC
B-A1-6	S13	43.5 - 45.0	19.2	35	11	98	CL
B-A2-1	S4	8.5 - 10.0	12.7			22	
B-A2-1	S10	28.5 - 30.0	10.1			46	
B-A3-1	Bulk	1.5 - 8.0	13.1	41	18	28	SC
B-A3-2	Bulk	1.5 - 8.0	23.9	52	21	66	MH
B-A3-2	S5	11.0 - 12.5	14.5			21	
B-A3-3	S4	8.5 - 10.0	22.4	41	16	89	CL
B-A3-4	S5	11.0 - 12.5	19.7	55	27	45	SC
B-A3-4	ST-1	14.0 - 16.0	19.9	30	9	46	SC
B-A3-5	S-2	3.5 - 5.0	15.4			27	
B-A3-5	S-4	8.5 - 10.0	16.6	46	21	35	SC
B-A3-7	S3	6.0 - 7.5	14.8			20	
B-A3-8	S3	6.0 - 7.5	29.3			56	
B-A3-9	S2	3.5 - 5.0	19.1			24	
B-A4-2	S1	2.0 - 4.0	15.6			27	
B-A4-4	S1	2.0 - 4.0	12.9			32	
B-A4-6	S1	2.0 - 4.0	24.2			55	
B-A4-8	S1	2.0 - 4.0	16.2			59	
Note:	NP – No	n-plastic; USCS – U	nified Soil Class	sification System			

Moisture density relationship (Proctor) test and CBR results are included in the following table.

	Table 6.2: Summary of Proctor and CBR Test Results							
Boring ID	Sample No	Natural Moisture Content	USCS Classification	Max. Dry Density	Optimum Moisture	CBR	Swelling	
		(%)		(pcf) (2)	(%)	(%)	(%)	
B-A1-3	Bulk	1.4	SC	120.4	11.7	13.0	0.5	
B-A1-6	Bulk	7.0	SC	120.1	11.8	10.9	0.2	
B-A3-1	Bulk	13.1	SC	121.1	11.2	12.3	0.1	
B-A3-2	Bulk	23.9	МН	105.2	17.9	4.0	3.8	
Notes:	(1)	Proctor Metho	d per VDOT proce	edures (equivalen	t to ASTM St	andard Proctor)		

(2) Abbreviation: pcf – pounds per cubic foot.

A single one-dimensional consolidation test was performed on a Shelby Tube sample obtained from SPT boring B-A3-4. The results are summarized in the following table.

Table 6.3: Consolidation Test Results Summary								
Boring ID	Sample No	Sample Depth	USCS	Pre- Consolidation Pressure	Virgin Compression Index	Recompression Index	Notes	
		(ft.)		(tsf)	(pcf)	(%)	(%)	
B-A1-4	ST-1	14.0-16.0	SC	0.893	0.124	0.017	Note (1)	
Notes:	Notes: 1. Specific gravity of the soil estimated at 2.65							

In addition to samples listed in Tables 6.1 to 6.3, all other SPT samples were tested for natural moisture test per VDOT protocol. Complete results of the soil laboratory tests are included in Appendix D.

7. Description of Subsurface Conditions

7.1. General Stratigraphy

Based on the review finding of historic test borings, and the results of current subsurface investigations, findings of the subsurface investigations, project limit subsoils are generalized to following stratigraphy.

Topsoil

One test boring, which was drilled in an unpaved area, a 4-inch-thick layer of topsoil was encountered.

Stratum F: Existing Fill

Fill is visually identified during drilling. It is composed of material placed during previous site development. The encountered fill materials generally consisted of brown, loose to medium dense silty sands with gravel (SM/SP-SM). Uncorrected SPT blow counts ranged from 6 blows per foot to 9 blows per foot (bpf), with an average blow count of 6 bpf.

Stratum P: Possible Fill/Potomac

Below the fill stratum, soils identified as possible fill or Potomac formation soil generally consisted of gray and brown, medium to coarse, silty sand with a varying percentage of gravel. Occasional fine grain soil

layers were also encountered within this layer. Uncorrected SPT N values ranged between 6 and 16 bpf, with an average blow count of 14 bpf.

Stratum R: Residual Soils

Upper residual soils generally consisted of gray and brown, medium to coarse, silty sand with varying percentage of gravel. Uncorrected SPT N values ranged between 10 and 44 bpf, with an average blow count of 30 bpf.

Stratum D: Decomposed Rock

Lithified weathered graphitic schist was encountered below the residual soil layer in most of the borings. Uncorrected SPT N values ranged between 55 bpf to 50 blows per 3" penetration. This layer extends to the maximum depth explored.

Core-able bedrock was not encountered in the depth drilled.

7.2. Groundwater Conditions

During the subsurface investigation programs, the deep borings encountered groundwater during drilling. The test borings were backfilled after completion and no long-term groundwater readings were taken. The following table summarizes the encountered groundwater levels during the investigations.

Boring ID	Location	Boring Ground	Ground	lwater Depth
		Elevation	Depth	Elevations
		(ft.)	(ft.)	(ft.)
B-A1-4	SPL Wall @ Abutment A Approach	203.9	23.5	180.4
B-A1-6	Abutment B Approach	211.6	58.5	153.1
B-A2-1	T-Ramp @ Bridge	188.0	23.5	164.5
B-A3-1	T Ramp MSE Wall	187.0	20.0	167.0
B-A3-2	T Ramp MSE Wall	189.2	20.7	168.5
B-A3-3	T Ramp MSE Wall	185.4	19.5	165.9
B-A3-4	T Ramp MSE Wall	187.2	22.0	165.2

Average groundwater elevation is estimated to be 167± ft. Fluctuations in groundwater depths should be anticipated along the project site since the depth to groundwater is influenced by water infiltration from rainfall and/or surface runoff, changes in surface topography, drainage systems and drought or wet time periods during the year. The groundwater depths and elevations are intended to provide a reference of measured groundwater levels during the subsurface explorations.

7.3. Design Soil Parameters

Design soil parameters were generally developed based on empirical relationships between corrected SPT blow counts (N60), the angle of internal friction, and unit weight of granular soils. A typical calculation of the friction angle is presented Appendix E, Section E1.2. Table 7.2 provides a summary of the design soil parameters used in analysis.

Table 7.2: Summary of Design Soil Parameters						
Stratum	Unit Weight,	Internal Friction Angle, <i>∮</i> (degree)	Cohesion, Intercept c (psf)			
Existing Fill (Stratum-F)	120 pcf	30°	0			
Possible Fill/Potomac (Stratum-P)	120 pcf	32°	0			
Residual Soils (Stratum-RS)	125 pcf	34°	0			
Decomposed Rock (Stratum-D)	130 pcf	38°	0			

7.4. Seismic Site Classifications

Based on subsurface conditions defined by the preliminary engineering subsurface investigation borings, Seismic Site Class D may be utilized for seismic design considerations. This estimation is based on average SPT N values from the test borings and the methods described in Table 3.10.3.1-1 of AASHTO LRFD Bridge Design Specifications. Detailed calculations are included in Appendix E.

8. Recommendations for Retaining Walls and Modified Slopes

The grade separation for the proposed T-Ramp is achieved by three MSE walls, namely Wall-1, Wall-2 and Wall-3. Wall 2 is at the northern end at Abutment C, providing grade separation normal to the T-Ramp axis. Grade separation on the east and west side of the ramp is provided by MSE Walls 1 and 3.

The T-ramp will be constructed to a width of 36'-4" using back-to-back retaining walls. The top of the ramp wall will be at EL 212± ft at Abutment C. The wall extends from Station 20+00 at the south end to 27+09 at the bridge (Abutment C). At abutment C, the effective wall heights for design varies from 26 feet to 30 feet, end to end. Noted that the effective heights are estimated by adding 2 feet of embedment to the exposed height.

Table 8.1: Design Parameters for Retaining Walls							
Item Unit Weight, γ Internal Friction Angle, ϕ							
MSE Wall Reinforced Granular Backfill (1)	105 pcf	34°					
SPL Wall Backfill (VDOT Select Type I, CBR 30) (2)	120 pcf	34°					
Foundation Soils 120 pcf 30°							

Notes: (1) External stability calculations are based on parameters provided herein.

(2) Select fill should be per VDOT Select Type I, CBR=30 per VDOT Spec Section 207.02

We recommend that for reinforced fill for the MSE consist of #57 stone.

we recommend that for reinforced fill for the MSE consist of #37 stone

8.1. MSE Wall 2 at Abutment C

The internal stability analysis, bearing check, and settlement estimations were performed for the wall using the average effective wall height of 28 feet. Due to expected additional horizontal loads, and overlapping of walls 1 and 3, the design strap length for wall 2 is set at 80% of the wall height, i.e. 23 feet. The external stability analyses bearing capacity checks are based on Load and Resistance Factor Design (LRFD) methods and AASHTO recommended load and resistance factors are used for the analyses. The LRFD analyses results indicate the Capacity Demand Ratio (CDR) is greater than one for Wall 2. The required maximum factored bearing pressure (demand) is 6.5 ksf (kips/sq.ft. Available factored bearing resistance (Capacity) is estimated at 13.6 ksf. Calculation details are included in Appendix E (Section E.2.1).

The settlement analysis was performed using the Modified Hough Method (FHWA, 2006a) with elastic stress distribution estimations. A uniform infinite loading settlement pressure due to exposed average wall height of 28 feet was considered in the analyses and the settlement is estimated at 0.3 inches. The details of the calculations are included in Appendix E. It is noted that the piles are not expected to develop negative skin frictions at this settlement levels and the piles may be installed prior to the construction of the MSE wall for the T-Ramp and friction isolating cans are not required.

8.2. MSE Walls for T-Ramp

The T-ramp will be constructed to a width of 36'-4". The wall extends from Station 20+00 (south end) at the south end to Station 27+09 at Abutment C (north end). The effective height of the wall will be less than 10 feet beyond Sta.22+50 towards the south. The strap length in these stations should be the project recommended minimum of 8 feet. For back-to-back wall check, the reinforcement strap lengths are set at 70% of the wall height. A check for the wall classifications of Wall1 and Wall 3 was performed to verify whether they are of Back-to Back MSE (BBMSE) walls or standalone MSE walls. The check was performed in accordance with FHWA (2009) guidelines. The summary of the results is provided in the following table.

	Table 8.2: Summary of Wall Conditions and Estimated Strap Lengths									
A	Effective Des	Effective Design Height (ft.)		Wall	Estimated Strap Length (ft.)					
Station	West Wall	East Wall	D ⁽¹⁾ (ft.)	Type (2)	West Wall	East Wall				
27+00	26.0	30.0	-2.9	BBMSE	20.7	23.5				
26+50	24.0	28.0	-0.1	BBMSE	20.4	23.2				
26+00	24.0	27.0	0.6	BBMSE	20.7	22.8				
25+50	22.0	26.0	2.7	MSE	15.4	18.2				
25+00	21.0	23.0	5.5	MSE	14.7	16.1				
24+50	19.0	19.0	9.7	MSE	13.3	13.3				
24+00	17.0	17.0	12.5	MSE	11.9	11.9				
23+50	15.0	15.0	15.3	MSE	10.5	10.5				
23+00	13.0	13.0	18.1	MSE	9.1	9.1				
22+50	10.0	10.0	20.3	MSE	8.0	8.0				
Notes:	Notes: (1) BBMSE is designated - when distance between the walls, D < 2 ft. (2) BBMSE - Back-to-Back Mechanically Stabilized Earth wall									

For constructability, we recommend that # 57 stone should be used behind the reinforced zone.

Back-to-Back Wall Configurations

The MSE walls from Sta.27+00 to Sta. 25+00 are classified as BBMSE walls and the straps lengths provided in the Table 8.2 include an overlap length per FHWA recommendations (30% of short wall height, 0.3 H_2). No external stability analyses are warranted for the walls, as both walls will act as a single gravity unit. For bearing capacity concern, the BBMSE configuration is compared to the Wall 2. The BBMSE configuration has lower loading and larger foundation width than Wall 2, therefore, Wall 2 recommendations can be conservatively used for this section. Assuming an infinite loading conditions similar to Wall 2 with 26 feet of fill the wall settlement in the middle station (Sta.26+00) of the configuration will be 0.6 inches.

Stand Alone MSE Wall Configurations

The MSE walls from Sta.25+00 to Sta. 20+00 are classified to be standalone MSE wall configurations with a maximum height of 19 feet. A strap length of 70% of the wall height is recommended. The effective wall heights south of Sta.22+50 (Sta.22+50 to Sta.20+00) are less than 10 feet and a minimum strap length of 8 feet should be used in these stations. The rest of wall strap length estimations (Sta. 22+50 to Sta. 25+00) are provided in the Table 8.2. Internal stability analyses and bearing resistance checks were performed at Sta.24+50 and Sta.22+50 for completeness.

Table 8.3: Summary of Global Stability and Bearing								
	Maximum	Eactor of Safety	Factored Bearing Pressure					
Station	Wall Height	against Deep Seated Failure	gainst Deep					
STA 24+50 to 22+50	19 feet	1.62	4.13 ksf	8.29 ksf				
STA 22+50 to End 10 feet 1.65 2.54 ksf 5.14 ksf								

It is noted that a layer of soft fine soil was encountered in Boring B-A3-4, at Sta.23+50 (Wall height 15 feet). Additional settlement analyses were performed for this area, which include a consolidation settlement analysis for the soft layer, and elastic settlement estimations for granular layers (See Appendix D).

Settlement Review

The summary of settlements is included in the following Table. It is noted the wall settlement gradient is less than 2.0 inches per 100 feet.

	Table 8.4: Summary of Settlement Calculations								
01-11	Effective T-R	amp Height (ft.)	Estimated Settlements						
Station	At West Wall	At East Wall							
27+00	26.0	30.0	0.30 inch ⁽¹⁾						
26+00	24.0	28.0	0.60 inch						
24+50	19.0	19.0	0.35 inch						
23+50	13.0	13.0	1.85 inch ⁽²⁾						
22+50	10.0	10.0	0.53 inch						
Notes: (1) Settlement estimations corresponds to Abutment C, located at the edge of RT-Ramp fill. (2) Value includes consolidated settlement due to 9 ft soft layer, encountered 9 feet below the subgrade.									

The settlement calculation details for walls are included in Appendix E. Total settlement and differential settlement of the MSE walls are within VDOT acceptable tolerances (within 100 feet of the bridge and beyond). However, due to estimated inconsistent differential settlements, we recommend slip joints for both walls (Wall 1 and Wall 3) at Stations 23+00 and 22+00.

Preliminary Global Slope Stability Analysis

A global slope stability analysis was performed for a typical stand-alone MSE wall system. The results of the analysis are given in Appendix E.2. The retaining wall will be designed by the contractor's wall designer, with reinforcements strength and placement determined for internal stability concern. For this preliminary global stability analysis, the MSE wall is assumed to be a coherent gravity structure. A cohesion value of 3000 psf is assigned to the reinforced zone to ensure that the trial slip surfaces in a limit equilibrium slope stability analysis will not go through the reinforced zone (zone behave as a coherent gravity structure). Once the strength and vertical placement of the reinforcements are available a "final combined failure check – global stability analysis with reinforced #57 stone" can be performed by contractor's wall designer. A note will be added to the MSE wall drawing requiring this check be performed by the wall designer.

8.3. RW-3 Retaining Wall at Abutment B Approach (Southeast Quadrant)

The south end of the approach embankment slope behind Abutment B is proposed to be widened by approximately 4 feet. A VDOT RW-3 retaining wall is proposed from Sta.70+25 to Sta.71+50. The effective wall height (for bottom of the wall to top of retained soil/pavement) varies from 8 feet (Sta.70+25) to 4 feet (Sta.71+50). The effective wall height includes 3 feet (drawings indicated 2.5 ft approximated to 3 feet) of embedment at the toe. It is noted that the maximum effective height includes the exposed height plus the embedment.

The existing approach slope consist of structurally compacted granular soil, sloped approximately at 2H:1V. The soil conditions at this location are estimated using data from nearest test borings DCP test hole DCP-SE. The compactness of the soil at proposed foundation subgrade appears to be medium dense based on SPT (N1)₆₀ values (SPT N value corrected for overburden and hammer efficiency). The conversion calculations of DCP index values to SPT N are included in Appendix E. Allowable bearing pressures with wall height are based on VDOT RW-3 standard sheet. The values are listed in the following table.

Table 8.5: Compression Loads and Bearing Resistances for RW-3 Walls								
Wall Height	Foundation width	Maximum Compression at Toe (1)	Allowable Bearing Capacity ⁽²⁾					
(ft.)	(ft.)	(Demand, psf)	(Capacity, psf)					
4	2.4	1141	1200					
5	3.0	1427	1500					
6	3.6	1712	1800					
7	4.2	1997	2000					
8	8 4.8 2283 2300							
Notes: (1) The val	(1) The values are based on VDOT Standard detail							
(2) Allowat	ole bearing capacity to e	exceed max compression for conse	ervativeness.					

The allowable bearing capacity calculations for the tallest wall (8') are provided based on the deduced friction angle of subgrade material. As part of subgrade preparation, we recommend that the foundation

subgrade should be densified by 10 passes of ride on vibratory compaction equipment. Details of the bearing capacity calculations with AASHTO slope reduction are included in Appendix E.

It is noted that the retained wall height listed in the above table includes a wall embedment of 3 feet. a (retained soil height is 1 foot to 5 feet). The resulting average additional soil load (a soil prism of 3 feet height and 6 feet base) is estimated at 1 kip per linear foot of wall (equivalent or less than a vehicle load). For this light additional loads, no additional slope stability analyses are warranted for this well performing, heavily vegetated 2H:1V slope.

8.4. Soldier Pile and Lagging (SPL) Wall at West Approach (Southwest Quadrant)

A soldier pile and lagging wall is proposed along the south side slope of the Abutment A approach embankment. The wall is designed to a retain soil up to 12 feet. Proposed wall spans from Sta.63+22 to Sta.65+38. Cross sections of the wall are included in Appendix A.9

Design of the soldier pile and spacing is for the entire wall which is based on section at Sta.64+50, where the wall retention is at its maximum. The wall is analyzed per LRFD Simplified Cantilever Method (Teng Method) for the required section, spacing and embedment. Top deflection (Service conditions) is estimated using the DeepEx software. The results are summarized as follows:

- Pile spacing 6 feet, Required Z_x = 126 inch³; Selected Pile HP 14x 89 with Z_x = 145 inch³
- Embedment Tip Elevation EL 178. This includes a minimum embedment 24 feet with 10 feet into decomposed rock stratum.
- Anticipated top deflection: 1.0 inch upon initial backfilling.

The calculation details are included in Appendix E, Section E4. Granular backfill compacted to VDOT specifications is recommended for the new fill behind the SPL wall. The soldier piles can be installed within a drilled shaft or be driven using an impact hammer. For the Impact driving installation of the soldier piles, a hammer capable of driving these piles to the design tip should be selected by the contractor. In addition, we recommend location templates and a fixed lead rig should be utilized for the driven pile installation option for accuracy.

8.5. Sliver Fill at East Approach (Northeast Quadrant)

The approach embankment to Abutment B is proposed to be extended along the north face of the slope from Sta.70+25± ft to Sta. 70+75 as part of the current improvements. The finished grade after the fill will make the slope to 2H:1V, shallower than the existing configuration. For example, at Sta.70+25, where the embankment height is 35 ft, the sliver fill widths are 3 feet at the top and 15 feet at the bottom, making the slope to 2H:1V from an existing configuration of 1.65H: 1V. Since the existing slope performed well and current additional fill provides extra toe loading by shallowing the slope, it is determined that the proposed configuration will be more stable than the existing and is acceptable from a stability standpoint.

The sliver fill slope area is covered with vegetation. A few small, isolated pockets of soil erosion caused by overtopping of pavement surface water flow, were observed at the top of the slope. Existing soil conditions along the slope area were evaluated with two DCP test holes, DCP-NE-Upper and DCP-NE-Mid. Based on the test results and visual observations, the existing slope is in good condition with no visible stability issues and found to be suitable for the slope expansion. We recommend that the eroded areas be excavated as part of the benching requires as specified in Section 303.04 of the Standard Specifications

as the fill is placed. Roadway drainage should be directed away from the slope or channelized using an armored flume.

The additional fill for the embankment expansion should be placed on a properly benched subgrade and compacted in lifts per VDOT standards. The fill soil should have a CBR of 5 or better, placed in 8-inchthick loose lifts, and compacted in place to VDOT standards.

9. Foundation Recommendations

New foundations are required at six (6) locations for the widening of existing Opitz Boulevard along the south edge of the east bound right lane. New foundations are required for the widening of the two abutments (Abutment A at west end & Abutment B at east end) and three piers (Piers 1, 2, & 3). The new Abutment C will be added to the new bridge to receive the T-Ramp to the Express Lanes.

A steel HP 10x57 piles driven in to decomposed rock stratum are proposed for the support of new bridge elements. The geotechnical foundation recommendations are based on the results of historic borings drilled within the footprint of the bridge foundation elements, and adjacent test borings recently drilled as part of this effort. For proposed new Abutment C, the current boring (B-A2-1) was drilled within the footprint of Abutment C.

9.1. Validation of Historic Borings

The historic boring results are validated by comparing their results to the two adjacent boring logged by a WRA geotechnical engineer. The historic borings are within the footprint of the existing bridge elements. The key comparison is made on top grade of high blow count decomposed rock layer. The pile tip estimations are mainly based on the embedment into the decomposed rock stratum.

It is noted the current boring blow-counts corresponds to high-efficient (90% \pm) auto hammer testing (SPT blow count N₉₀) whereas, based on the year drilled and the results, the historic borings would have been performed using the donut or standard safety hammer with efficiency at 60% \pm (SPT blow count N₆₀. The decomposed rock stratum classification is, therefore, based on residual soils with SPT blow counts of N₆₀ >50 \pm for historic borings, and N₉₀>33 \pm current borings. The validation summary is provided in the following table.

	Table 9.1: Validation of Historic Borings for Foundation Design									
Bridge Element	Pile Cap Subgrade EL	Boring Type	Boring ID	Opitz Blvd Station	Boring Top EL	Top of DR Stratum ⁽¹⁾	Notes			
	(ft.)			(ft.)	(ft.)	(ft.)				
A1		Current	B-A1-4	64+75	203.9	184.9				
Abutment A	204.8	Historic	1	65+44	194.5	183.5	Compared well			
^		Historic	2	65+44	193.1	180.6				
		Current	B-A1-4	64+75	203.9	184.9	Compared OK to the			
D: 4	400 (2)	Historic	4	66+52	193.1	178.1	interpolated DR stratum to			
Pier 1	189± ⁽²⁾	Current	B-A2-1	67+50 ⁽¹⁾	188.0	162.0	EL 170.2			

	Table 9.1: Validation of Historic Borings for Foundation Design								
Bridge Element	Pile Cap Subgrade EL	Boring Type	Boring ID	Opitz Blvd Station	Boring Top EL	Top of DR Stratum ⁽¹⁾	Notes		
	(ft.)			(ft.)	(ft.)	(ft.)			
		Current	B-A2-1	67+50 ⁽¹⁾	188.0	162.0	Compared OK.		
Pier 2.	170± (2)	Historic	5	68+10	179.5	169.0	Variation noticed in Historic		
		Historic	6	68+10	178.4	167.2	borings.		
		Historic	7	68+77	172.7	162.2	Compared OK		
Pier 3	167± ⁽²⁾	Historic	8	69+78	172.7	157.2	Variation noticed in Historic		
		Current	B-A1-6	70+30	211.6	163.1	borings.		
		Historic	9	70+10	169.9	165.1			
Abutment B	201.1	Historic	10	70+18	169.8	165.3	Compared well		
	Ь		B-A1-6	70+30	211.6	163.1			
Notes:	Notes: (1) Approximate value interpolated from drawings. (2) Approximate values of existing pier pile cap subgrades.								

A reasonable agreement / comparison of current borings and historic borings is achieved.

9.2. Design Recommendations for Driven Piles

Steel HP 10x57 beam piles are recommended for the support of expanding existing bridge elements and the new Abutment C for the T-Ramp connection to the bridge. The piles will be driven into Stratum D, the decomposed rock layer to a nominal (ultimate) resistance of 385 kips. This nominal value yields a factored geotechnical resistance of 250 kips when performing dynamic testing at each substructure and applying 0.65 as the appropriate resistance factor. The axial resistance is estimated using the DRIVEN program, and the complete results are included in Appendix E. A summary of estimated pile tip elevations and lengths are included in the following table.

	Table 9.2: Summary of Estimated Pile Tips for Proposed Bridge Elements								
Bridge Element	Pile Cap Subgrade EL	Assumed Existing Grade EL	Boring Type	Boring ID	Opitz Blvd Station	Ground Water EL	Top EL of DR Stratum ⁽¹⁾	Estimated Pile Tip EL	
	(ft.)	(ft.)			(ft.)	(ft.)	(ft.)	(ft.)	
Abut A	205	205	Historic	1 & 2	65+44	182	180	150	
Pier 1	189	191	Historic	4	66+52	182	178	144	
Pier 2.	186	191	Historic	5 & 6	68+10	167	168	146	
Pier 3	185	191	Historic	7 & 8	69+78	166	160	145	
Abut B	201	191	Historic	9 & 10	70+15	167	165	151	
Abut C	191	192	Current	B-A2-1	67+50 ⁽³⁾	185	162	141	
Notes:	Notes: (1) Bearing stratum of pile foundation, tip elevations for HP 10x57 driven to 385 kips nominal.								

Based on the axial capacity results, we estimate that the piles can resist the anticipated a factored uplift load of 7 kips per pile. The DRIVEN results are included in Appendix E.

A lateral load analysis is performed for a pile in the typical group configuration. Based on the results, piles have the required lateral load resistance of 5 kips/pile (factored) in the weak axis direction with three rows of piles. LPILE results are included in Appendix E.

One of the 4 soil samples subject to corrosivity testing indicated potentially slightly aggressive soils within the existing abutment approach fill embankments according to Chapter 23 of the Structure and Bridge Manual by having a resistivity value of 2540 ohm-cm. Although not necessarily considered aggressive by FHWA guidelines the long-term axial structural capacity of the pile section was checked after a reduction of 0.05-inch loss of section at the flanges and web according to Chapter 23.

9.3. Pile Drivability and Dynamic Testing

The Wave Equation Analysis of Pile (WEAP) was performed for a pile in typical configuration in order to determine pile drivability and preliminary hammer energy range for pile installation. Based on the analyses, a pile hammer within the energy range of 40 ft-kips to 60 ft-kips is expected to install the piles to the required nominal resistance, without overstressing the pile. Contractor shall submit a preliminary WEAP analysis for the selected installation equipment, with driving resistance at the required nominal resistance range from 36 blow/ft to 96 blows/ft.

The pile nominal resistance should be verified by Pile Driving Analyzer (PDA) testing at each substructure location during construction (totaling 6 locations). The PDA testing should be performed during initial drive, or during a restrike on a test pile at each location. The test pile should be at least 10 feet longer than the production piles of the location. The pile installation criteria for the production pile should be developed based on the PDA results.

10. Pavement Recommendations

10.1. Opitz Boulevard Widening

The eastbound Opitz Boulevard will be widened to accommodate an additional traffic lane associated with the T ramp. Following are the summary of existing pavement sections encountered in the Opitz Boulevard test borings. Pavement widening should be in accordance with VDOT Standard WP-2.

Table 10.1: Existing Pavement Section at Opitz Boulevard									
Location	Boring ID	Asphalt	Agg. Base	Concrete	Notes				
		(inch)	(inch)	(inch)					
East Bound Travel Lane	B-A1-1	12.0	4.0						
West Approach	B-A1-2	11.0	7.0						
	B-A1-6	5.0	12.0						
East Bound Shoulder, East Approach	B-PE-1	4.5	10.5						
	B-PE-2	3.0	11.0						

We recommend that the new pavements for the widening area match the thickness of the existing pavements. In addition, new prepared subgrade and the aggregate base layer should ensure positive

drainage towards the south edge of the pavement. Following are the recommended thickness for the new pavement.

Table 10.2: Opitz Boulevard – Recommended New Pavement									
Layer Name Layer Type Thickness Summary									
Asphalt Surface	SM-9.5 D	2.0 inch							
Asphalt Intermediate	IM-19.0A	2.0 inch	Total HMA 12.0 inch						
Asphalt Base	BM-25 A	8.0 inch							
Aggregate Base	21B	6.0 inch	Aggregate Base	6.0 inch					

Notes:

- (1) Standard UD-4 edge drains along all new pavement sections
- (2) Standard Combination Underdrain (CD-2) shall be provided at grade sags, bridge approaches, and at the lower end of undercut areas.
- . Aggregate base should extend 6 inches beyond the sides of the base.

10.2. Pavements for T-Ramp and Express Lanes

The eastbound Opitz Boulevard will be widened to accommodate an additional traffic lane associated with the T ramp. Following are the summary of existing pavement sections encountered in the Express Lane test borings.

	Table 10.3: Existing Pavement Section - I-95 Express Lanes							
		Existing Pavement Section						
Boring ID	Location	Pavement Core	Asphalt (ASPH)	Agg. Base (BASE)	Concrete (CONC)	Notes		
			(inch)	(inch)	(inch)			
B-A2-1	I-95 HOT T-Ramp		7.0	17.0	6.0	Note (1)		
B-A3-1	I-95 HOT T-Ramp		15.0	4.0				
B-A3-2	I-95 HOT T-Ramp		18.0	18.0				
B-A3-3	I-95 HOT T-Ramp		15.0	5.0	4.0	Note (2)		
B-A3-4	I-95 HOT T-Ramp		18.0	18.0				
B-A3-5	I-95 HOT T-Ramp		19.0	9.0				
B-A3-6	I-95 HOT T-Ramp		19.0	18.0				
B-A3-7	I-95 HOT T-Ramp		15.0	9.0				
B-A3-8	I-95 HOT T-Ramp		19.0	23.0				
B-A3-9	Road south of T ramp		12.0	9.0	3.0	Note (3)		
B-A4-1	I-95 XBL MOT	1	14.0	10.0				
B-A4-2	I-95 XBL MOT	1	17.0	8.0				

	Table 10.3: Existing Pavement Section - I-95 Express Lanes								
			Existing Pavement Section						
Boring ID	Location	Pavement Core	Asphalt (ASPH)	Agg. Base (BASE)	Concrete (CONC)	Notes			
			(inch)	(inch)	(inch)				
B-A4-3	I-95 XBL MOT	1	17.0	8.0					
B-A4-4	I-95 XBL MOT	1	15.0	9.0					
B-A4-5	I-95 XBL Slip Ramp	1	16.0	9.0					
B-A4-6	I-95 XBL Slip Ramp	1	15.0	10.0					
B-A4-7	I-95 XBL Slip Ramp	1	16.0	9.0					
B-A4-8	I-95 XBL Slip Ramp	1	15.0	33.0					
Notes:	(1) 7.0" ASPH + 6.0" CONC + 17.0"	Base							

es: (1) 7.0"ASPH + 6.0"CONC + 17.0"Base

(2) 15.0"ASPH + 5.0" Base + 4.0" CONC

(3) 9.0"ASPH + 3.0"CONC + 3.0"ASPH + 9.0"Base

The test borings drilled for the T-Ramp wall foundation (B-A3 – xx borings) encountered a small portion of concrete within the pavement section. The borings were drilled for the T-Ramp foundation design and located at the edge of the travel lanes. Cores were not obtained in these sections. The auger took several minutes to penetrate the concrete. The B-A4 borings were drilled for pavement design. Pavement cores were recovered from these borings. These borings were drilled within the full depth shoulder and considered to reflect the existing conditions of the pavements.

The areas where the pavement sections with concrete will be excavated for the preparation of the MSE wall foundations. It is noted that the section depicted by Notes (2) is acceptable to be left in place, (15" HMA and 5" Base section above concrete) as it is adequate for the Express Lane traffic levels.

We recommend that the new pavements for the widening area match the thickness of existing pavement in the area to maintain a consistent section within the project limits. In addition, new prepared subgrade and the aggregate base layer should ensure positive drainage towards the south edge of the pavement. Following are the recommended thickness for the new pavement.

Table 10.4: I-95 Express HOT Lanes – Recommended New Pavement									
Layer Name Layer Type Thickness Summary									
Asphalt Surface	SM-12.5E	2.0 inch							
Asphalt Intermediate	IM-19.0 D	2.0 inch	Total HMA	15 inches					
Asphalt Base BM-25.0 A 11.0 inch									
Aggregate Base	21B	15.0 inch	Aggregate Base	15 inches					

Notes: (1) Standard UD-4 edge drains along all new pavement sections

(2) Standard Combination Underdrain (CD-2) shall be provided at grade sags, bridge approaches, and at the lower end of undercut areas.

Table provided pavement section is recommended for new expressway pavements including the T-Ramp. A validation pavement thickness evaluation is performed for this section and the results are included in Appendix E.6. For the analysis I-95 traffic count is conservatively assumed with a subgrade resilient modulus (M_r) value of 5000 psi. As expressway does not carry trucks, 1% truck traffic volumes is assumed to account for occasional heavy load traffic.

During construction, the aggregate base should extend 6 inches beyond the sides of the base.

10.3. MOT Use of Shoulder Pavements

Current construction sequence requires use of existing shoulders for Maintenance of traffic during construction Following are the recommendations for the pavement section requirements for MOT.

HOT Lanes East Shoulder

Based on the results of current investigation, the shoulders have at least 14 inches of asphalt which is a sufficient section to support Express Lane traffic during construction.

Southbound I-95 Outside Shoulder

According to available record drawings the I-95 southbound outside shoulder has already been reconstructed to support Mainline traffic during the Express Lane work. Reviewed drawing indicating 10 inches of HMA thickness are included in Appendix E.6. A pavement thickness analysis performed to validate the existing thickness to support the MOT on a subgrade with M_r =5000 psi. The results of the analysis are included in the same appendix.

Opitz Blvd Northeast Quadrant

A new MOT section is required in a very short stretch along Opitz Blvd on the Northwest quadrant approaching the bridge. We recommend this portion should be fortified with the following section:

HMA: 2"- IM-19.0D

4" BM-25.0A

Subbase: 6" Aggregate Base 21B

Mill and Overlay

Area where the lines are eradicated, a 2-inch depth mill and overlay with SM-12.5E HMA mix layer is recommended. For Opitz Boulevard, mill and overlay with SM-9.5D HMA mix layer is recommended.

10.4. Subgrade Preparation and Construction Considerations

The new pavement and retaining wall subgrades should be observed by the geotechnical engineer during construction. Any unsuitable soils such as wet, loose, or fine soils with high plasticity should be undercut to a maximum of 3 feet and replaced with controlled compacted fill. Additional measures such as use of a separation fabric on undercut subgrade before placing the fill may be employed as recommended by the geotechnical engineer.

Unsuitable subgrade materials consisting of CH and MH materials are anticipated to be encountered at subgrade levels in the vicinity of borings B-A1-1, B-A1-2 and B-A3-2 which is in the vicinity of the start of the soldier pile wall. These areas are identified on the cross sections as areas to be undercut (3 ft. max) and replaced with CBR 5 material. The undercut will be approximately 10 feet wide, and approximately span from Sta 62+50 to Sta.64+75.

10.5. Subgrade Preparation for Storm Drain at T-Ramp Sta. 23+10

A 48-inch diameter concrete storm drain is proposed across the T-Ramp at approximately Sta 23+10. The invert of the pipe is at EL168 feet while under the embankment footprint. Based on the results of boring B-A3-4 at Sta.23+50, pipe subgrades consist of competent natural soils. Following are noted:

The materials below pipe subgrades are anticipated to be medium stiff clays to very dense residual soils. An acceptable bedding material and thickness would be the Standard Detail (PB-1) for subgrade condition identified as "Normal Earth Foundation", however the groundwater levels in this area expected vary between EL 165 and EL 169 which will result in pipe subgrades being wet during construction. To facilitate construction, we recommend 18 inches of undercut and backfill. The undercut should be backfilled with 12 inches of No.57 stone wrapped in separation fabric for groundwater control and subgrade preservation. The wrapped stone should be capped with a minimum 6" crusher run (Chapter 4 – Installation of Pipe Backfill and Testing, Page 10, VDOT Soils and Aggregate Compaction) or 6" of bedding material. Separation fabric is recommended to prevent fine particle migration through #57 stone and subsequent erosion/piping on surrounding native soils.

The calculated settlement due to embankment loading listed in Table 10.4 for this area is mainly due to the soft soils above the proposed storm drain. The materials below pipe subgrades are stiff clays and very dense residual soils, therefore, the settlement of the pipe due to embankment load are not a concern for the proposed concrete pipe.

11. References

- AASHTO (2018). *AASHTO LRFD Bridge Design Specifications*., 8th Ed. American Association of State Highway and Transportation Officials (AASHTO). Washington, D.C.
- FHWA (2006), "Design and Construction of Driven Pile Foundations", Publication No. FHWA-NHI-05-042, U.S. Department of Transportation, Federal Highway Administration, Washington D.C, April 2006.
- FHWA (2006a), "Soils and Foundations, Reference Manual, Volume 1", Publication No. FHWA-NHI-06-088. Department of Transportation, Federal Highway Administration, Washington D.C, November 2009.
- FHWA (2009), "Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes", Volumes I and II, Publication Nos. FHWA-NHI-10-024 & FHWA-NHI-10-025, GEC NO.11, U.S. Department of Transportation, Federal Highway Administration, Washington D.C, November 2009.
- VDOT (2007), Road and Bridge Specifications, Virginia Department of Transportation.
- VDOT (2011), Manual of the Structures and Bridge Division Part 11, Chapters 9 & 10, Virginia Department of Transportation.
- VDOT (2014), *Manual of Instructions Chapter III: Geotechnical Engineering*, Virginia Department of Transportation.

Page 20

APPENDIX A

Figures

APPENDIX A.1

Site Vicinity Map

SITE VICINITY MAP

I-95 Expressway Spot Improvements at Opitz Blvd, Prince Williams, County, Virginia

WRA

WRA W/O No. 45893.001

Project No. 0095-076-299, P101, C501, UPC 116663

Reference: Google

APPENDIX A.2

Test Hole Location Plan

PROJECT

0095-076-299

SHEET NO.

APPENDIX A.3

Selected Plans – Bridge Elements

Description

COMMONWEALTH OF VIRGINIA DEPARTMENT OF TRANSPORTATION STRUCTURE AND BRIDGE DIVISION ABUTMENT C ELEVATION

PRELIMINARY PLANS THESE PLANS NOT TO BE USED FOR CONSTRUCTION © 2021, Commonwealth of Virginia

APPENDIX A.4

Selected Plans – MSE & SPL Walls

WHITMAN REQUARDT & ASSOCIATE

STRUCTURAL ENGINEER

 STATE
 FEDERAL AID
 STATE
 SHEET

 ROUTE
 PROJECT
 ROUTE
 PROJECT
 NO.

 VA.
 —
 2000
 0095-076-299, B688
 00

Notes:

The minimum design life of MSE wall shall be (100-year).

The anticipated MSE wall total settlement is $_{\rm X}_{\rm L}$ inches and differential settlement is $_{\rm X}_{\rm L}$.

For bearing resistance requirements, see the MSE Wall Bearing Resistance Data Table.

For settlement requirements, see the Estimated Wall Settlement

Vertical slip joints shall be placed in the wall at intervals not to exceed _X_ ft. between Sta XX+XX.XX and Sta XX+XX.XX

Prior to wall construction, the foundation shall be compacted with a smooth wheel vibratory roller weighting 10 tons minimum. The drums of the roller should be ballasted, and each pass of the roller should overlap one half the width of the previous pass. The roller shall make at least ten passes over the proposed wall foundation zone. No density test will be required. Any foundation soils found to be unsuitable and/or unstable shall be removed and replaced with select material Type I minimum CBR of 30. Compact the foundation area according to the VDOT Specifications.

Remove unsuitable or unstable foundation material below the bottom of the wall and replace with select material prior to wall construction. Compact the foundation area according to the VDOT Specifications.

The minimum required depth of undercut shall be _X_ ft. between Sta XX+XX.XX and Sta XX+XX.XX

The estimated required depth of unsuitable material to be removed is shown on the plans. The lateral limits of excavation are dependent on the depth at a particular location below the wall. Additional localized excavation may be required depending on the site conditions at the time of construction.

Minimum panel design thickness is 5.5 inches. Thickness of concrete must increase to accommodate any architectural surface finish that may be specified.

Concrete in moment slabs and parapet/railing shall be Low Shrinkage Class A4 Modified.

Corrosion Resistant Reinforcing (CRR) steel shall be used in moment slab and shall be the same type of corrosion resistant reinforcing steel specified for parapet/railing.

Class I CRR steel shall be used in copings.

Class I CRR steel shall be used in portions of MSE Wall panels within splash zone as shown on plans.

An impervious membrane shall be placed below the pavement and just above the first row of reinforcement. The membrane shall be sloped to drain away from the facing to an intercepting longitudinal drain outlet beyond the reinforced zone.

A non-woven geotextile shall be used as a separator between the mechanically stabilized earth mass and the subbase.

(Coping) (parapet) (moment slab) shall not be placed until $_{\rm L}$ X $_{\rm L}$ days after wall completion have elapsed.

The selected wall supplier will submit a detailed design and shop drawings for approval.

Provide drainage details such as perforated pipe underdrain and/or drainage blanket based upon field conditions. For wall installation at stream crossing, provide adequate drainage so the difference between streambed and saturated backfill is not greater than what is considered in the design.

All panel types and other related elements shall be detailed on shop drawings.

COMMONWEALTH OF VIRGINIA DEPARTMENT OF TRANSPORTATION

STRUCTURE AND BRIDGE DIVISION

MSE WALL LAYOUT (I OF 2)
ABUTMENT C AND APPROACH

No. Description Date Designed: X.X.X... Date Plan No. Sheet No. Drawn:X.X... Nov. 2021 257-38A 00 of 93

PRELIMINARY PLANS

THESE PLANS NOT TO BE USED FOR CONSTRUCTION

© 2021, Commonwealth of Virginia

Scale: $\frac{3}{32}$ " = 1'-0" unless otherwise noted.

SOLDIER PILE LOCATION PLAN

SOLDIER PILE LOCATION DATA							
Soldier pile no.	Station	Offset	Min. tip elev.				
2							
3							
4							
5							
6							
7							
8							
9							
10							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							

WHITMAN REQUARDT & ASSOCIATE RICHMOND, VA STRUCTURAL ENGINEER

SUGGESTED SEQUENCE OF CONSTRCTION AND GENERAL REQUIREMENTS:

- I. Clear and grub the area for the wall construction.
- 2. Place all erosion and sediment perimeter controls in accordance with the approved erosion and sediment control plan. These controls shall remain in place and be continuously maintained during all construction.
- 3. Grade a bench along the proposed wall alignment wide enough to accommodate the pile driving equipment required to install the soldier piles for the retaining wall.
- 4. The wall shall be constructed in a top down manner to continually support the earth and roadway adjacent to the wall. For no reason shall an open unsupported excavation face be left unprotected.
- 5. Once the permanent concrete lagging panels are in place the Contractor shall place the #68 stone backfill between the temporary wood lagging and the permanent concrete lagging panels. This shall be done at the end of each working day. The stone backfill shall be protected at the surface by a geotextile fabric to prevent mud and silt from fouling the stone.
- 6. All excavation material shall be removed to an approved stockpile or disposal site.

Scale: $\frac{3}{32}$ " = 1'-0" unless otherwise noted.

- 7. The top coping and pile encasement shall be placed once the precast panels have been placed.
- 8. Once the precast panels have been placed the Contractor may grade the areas behind the top of the wall. Extreme care shall be taken so as not to damage the concrete wall construction.

STATE	FEDERAL AID		STATE		SHEET
STATE	ROUTE	PROJECT	ROUTE	PROJECT	NO.
VA.			2000	0095-076-299, B688	XXP

Notes:

For abutment details, including connection to wingwall see bridge plans.

Soldier piles shall be driven to or below the minimum tip elevation. A template and pile driving equipment with a fixed lead shall be used for the installation accuracy. The driving hammer shall be powerful enough to drive HPI4x89 piles to the required depths into stiff residual soils and decomposed rock.

COMMONWEALTH OF VIRGINIA DEPARTMENT OF TRANSPORTATION

STRUCTURE AND BRIDGE DIVISION

SOLDIER PILE WALL PLAN AND PILE SECTION

No. Description Date Designed: X.X.X... Date Plan No. Sheet No. Drawn:X.X.X... Nov. 2021 257-38A of 93

PRELIMINARY PLANS

THESE PLANS NOT TO BE USED FOR CONSTRUCTION

© 2021, Commonwealth of Virginia

APPENDIX A.5

Cross Sections - MSE Walls

-100

-50

-150

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

ACQUISITION OF RIGHT OF 15WAY.

PROJECT 0095-076-299

SHEET NO. 5:3

100

REVISED STATE PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA. District)* CROSS SECTIONS SHEET NO PROJECT ROUTE SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021 DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700 SCALE 1 IN. = 10 FT (H)SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021 1 IN. = 10 FT (V)0095-076-299, C-501 5:3 DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT 200 200 Ŋ 190 190 180 -150 150 -100 -50 50 100 OBTR-1 OBTR-1 STA 20+00.00 200 200 26.84". 30.56". 14.80' 36' 190 180 -100 100 -150 -50 50 150 OBTR-1 OBTR-1 STA 19+75.00 200 200 190 RIGHT OF WAY PLANS THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 170 180

0

STA 19+50.00

OBTR-1

50

OBTR-1

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA. District)* CROSS SECTIONS SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021 DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700 SCALE 1 IN. = 10 FT (H)SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021 1 IN. = 10 FT (V)28.99° EL 32.71° EL 36.71° EL 200 190 180 -100 -150 50 -50 OBTR-1 OBTR-1 STA 21+50.00 200 28.91 32.63 36.65 190 180 -150 -100 -50 50 OBTR-1 OBTR-1 STA 21+25.00 200 190 RIGHT OF WAY PLANS THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 170 180 ACQUISITION OF RIGHT OF 15WAY. -150 -100 -50 0 50 100 OBTR-1 OBTR-1 PROJECT 0095-076-299 STA 21+00.00 SHEET NO. **5**.5

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H) $1 \ IN. = 10 \ FT \ (V)$

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 56

-150

-100

-50

OBTR-2

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

ACQUISITION OF RIGHT OF 15WAY.

PROJECT 0095-076-299

SHEET NO. **57**

100

REVISED STATE PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA District)* CROSS SECTIONS SHEET NO PROJECT ROUTE SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021* DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700 SCALE 1 IN. = 10 FT (H)SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021 $1 \ IN. = 10 \ FT \ (V)$ 95 0095-076-299, C-501 57 DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT 183.90 210 00 200 -0.1% -5.0% -2.0% 190 190 180 180 -150 -100 100 -50 50 150 OBTR-2 OBTR-2 STA 22+50.00 210 210 200 200 -5.0% -2.0% 1.0% 190 5.6% RIGHT OF WAY PLANS THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 170 180

STA 22+25.00

50

OBTR-2

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H)

 $1 \ IN. = 10 \ FT \ (V)$

REVISED STATE SHEET NO PROJECT ROUTE 95 0095-076-299, C-501 58

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H)

 $1 \ IN. = 10 \ FT \ (V)$

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 59

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H)

 $1 \ IN. = 10 \ FT \ (V)$

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 60

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H) $1 \ IN. = 10 \ FT \ (V)$

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 61

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956
By Resolution of the Highway Commission dated January 18, 1973
By Resolution of the Commonwealth Transportation Board dated January 18, 2001
By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

Bý Resolution of the Commonwealth Transportation Board dated January 18, 20
By Resolution of the Commonwealth Transportation Board dated January 18, 20
REVISED
STATE
ROUTE
PROJECT

CROSS SECTIONS

SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

VA. 95 0095-076-299, C-501 6:2

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H) 1 IN. = 10 FT (V)

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H)1 IN. = 10 FT (V)

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 64

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022) LIMITED ACCESS HIGHWAY

CROSS SECTIONS SCALE 1 IN. = 10 FT (H) 1 IN. = 10 FT (V)

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 65

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

REVISED STATE PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA. District)* CROSS SECTIONS SHEET NO PROJECT SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804) 330-3781,03/09/2021* ROUTE DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700 SCALE 1 IN. = 10 FT (H) SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021 1 IN. = 10 FT (V)0095-076-299, C-501 66 DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT **END RAMP OBTR** STA. 27+09.31 230 220 -3.0% -2.0% -2.0% -3.0% 210 200 180 50 100 -150 -100 -50 150 OBTR-2 OBTR-2 STA 27+00.00 230 230 220 -2.0% -5.0% -5.0% -2.0% 210 210 200 200 190 190 RIGHT OF WAY PLANS THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 170 180 ACQUISITION OF RIGHT OF 15WAY. -150 -100 -50 50 100 OBTR-2 OBTR-2 PROJECT 0095-076-299 SHEET NO. **66** STA 26+75.00

APPENDIX A.6

Cross Sections - Slivcer Fill & RW3 Wall

160

-150

-100

-50

ACQUISITION OF RIGHT OF 15WAY.

PROJECT 0095-076-299

SHEET NO. **86**

100

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA_District)* CROSS SECTIONS SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804) 330-3781,03/09/2021* DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700 SCALE 1 IN. = 10 FT (H)SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021 1 IN. = 10 FT (V)5.08' 6.08' 11.08' 12.08' 220 -2.0% -2.0% 210 200 190 180 170 -150 -100 -50 50 STA 70+50.00 212.99 213.01 212.67 212.65 211.69 230 60,08' EL 62.08' EL 220 -2.0% -2.0% 210 200 190 180 RIGHT OF WAY PLANS THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 160 170

STA 70+25.00

50

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA_District)*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

REVISED STATE SHEET NO PROJECT ROUTE 0095-076-299, C-501 *8*7

DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA. District)*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highwey Commission dated October 4, 1955.
By Resolution of the Highwey Commission dated Jorgary 18, 1973.
By Resolution of the Commonwealth Transportation Board dated Bib Weltspated February 2022)

FEWISED

STATE

STATE

OUTE

PROJECT

SHEET NO.

DESIGN FEATURES RELATING TO CONSTRUCTION
OR TO REQUIATION AND CONTROL OF TRAFFIC
MAY BE SUBJECT TO LICHANGE AS DEEMED

NECESSARY BY THE DEPARTMENT

230

220

220

220

220

CROSS SECTIONS

SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

STA 71+50.00

APPENDIX A.7

Cross Sections - SPL Walls

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA_District)*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS

SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

| STATE | STATE | STATE | SHEET NO. | SHEET NO. | SHEET NO. | | SHEET NO. | SH

DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA District)*

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

230

220

210

200

190

-150

-100

SURVEYED BY, DATE *H&B_Surveying_and_Mapping,LLC_(804).330-3781,03/09/2021*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

LIMITED ACCESS HIGHWAY

By Resolution of the Highway
By Resolution of the Highway

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS

SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

220

SHEET NO. **75**

RIGHT OF WAY PLANS

THESE PLANS ARE UNFINISHED
AND UNAPPROVED AND ARE NOT
TO BE USED FOR ANY TYPE
OF CONSTRUCTION OR THE 190

ACQUISITION OF RIGHT OF 15WAY.

PROJECT 0095-076-299

100

DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT

3.70° EL 4.70° EL 11.08° EL 12.08° EL

STA 64+75.00

50

-37,24' EL 215,46 -35,24' EL 215,63

-50

-2.0%

PROJECT MANAGER *Bimpal Shah, P.E. (703) 259-2362 (NOVA_District)*

SUBSURFACE UTILITY BY, DATE Accumark, Inc. (804) 550-7740, 07/07/2021

DESIGN BY Whitman, Requardt, & Associates, LLP (804) 272-8700

SURVEYED BY, DATE H&B _Surveying_and _Mapping, LLC_(804) 330-3781, 03/09/2021

LIMITED ACCESS HIGHWAY By

By Resolution of the Highway Commission dated October 4, 1956 By Resolution of the Highway Commission dated January 18, 1973 By Resolution of the Commonwealth Transportation Board dated January 18, 2001 By Resolution of the Commonwealth Transportation Board dated TBD (Anticipated February 2022)

CROSS SECTIONS
SCALE 1 IN. = 10 FT (H)

1 IN. = 10 FT (V)

DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT

BEGIN PROJECT 0095-076-299, B-688 STA. 65+35.00 OPITZ BLVD B

APPENDIX B

Historic Data Review Memo

Whitman, Requardt & Associates, LLP

Engineers · Architects · Environmental Planners

MEMORANDUM

Est. 1915

Date: September 22, 2021

To: David Shiells

From: Siva Kesavan / Jeff Basford

Subject: Review of Existing Borings and Proposed

Validation Borings

CC: Mitch Johnson

Work Order Number: 45893-001

Contract Number:

Project: I-95 Express Spot Improvement at Opitz Blvd.,

Prince William Co, VA

Introduction

This memo presents our review of available historic test borings in the vicinity of Opitz Boulevard. The review was performed during the development of a subsurface investigation program for the proposed project of ramp down from existing Opitz Blvd bridge. We reviewed the following as-built plans:

 VDOT(1979), As Built Plans, Titled "Proposed Bridge on Opitz Blvd. over I-95, Ramp G & N.B.C.C RD., Prince William Co.-0.4 Mi N. Int. Rte 642, Proj. 0095-076-112, B636," Commonwealth of Virginia, Department of Highway and Transportation, dated October 24, 1979.

The plan view and elevations are enclosed as Figure 1 and Figure 2 in the enclosure. The structural elements of the bridge include the following: Abutment A, Pier 1, Pier 2, Pier 3, and Abutment B, from west to east. Figure 4 shows a Google street view looking north, where the express lanes are located between Pier 1 and Pier 2.

Historic Borings

A total of nine (9) SPT test borings were depicted in the as-built plans. A summary of the borings is provided in the following table.

	Table 1. Summary of Historic Test Borings													
	Traffic	Boring		Borin	g Grades	Ground water	Decomposed ⁽²⁾ Rock							
Structure	Lane ⁽¹⁾	No.	Station & Offset	Top EL (ft.)	Bottom EL (ft.)	EL (ft.)	EL (ft.)							
Abutment A	W.B.L	1	Sta.65+44; 15' LT	194.5	174.0	181.7	184.0							
	E.B.L	2	Sta.65+44; 15' RT	193.1	172.2	179.9	182.6							
Pier 1	W.B.L	4	Sta.66+52; 10' LT	193.1	172.9	180.0	178.1							
Pier 2	W.B.L	6	Sta.68+10; 10' LT	178.4	157.7	170.0	167.9							
	E.B.L	5	Sta.68+10; 10' RT	179.5	148.7	168.6	169.0							
Pier 3	W.B.L	8	Sta.69+78; 10' LT	172.7	147.3	166.7	162.7							
	E.B.L	7	Sta.69+77; 20' RT	172.7	151.7	166.7	163.7							
Abutment B	W.B.L	10	Sta.70+18; 13' LT	169.8	144.7	167.0	165.3							
	E.B.L	9	Sta.70+18; 20' RT	169.6	153.4	166.0	165.1							

801 South Caroline Street

Baltimore, Maryland 21231

			Т	able 1. Summary of	Historic Te	est Borings							
	Structure Traffic Boring Station & Offset Boring Grades Ground Decomposed ⁽²⁾												
Structi	ure	Lane ⁽¹⁾	rattic Boring Station & Officet Boring Water Rock										
Notes:	(1)	Abbrevia	ations: W.	B.L – West Bound La	ne; E.B.L	 East Bound I 	_ane.						
	(2) Decomposed rock identified in the boring logs generally indicates an SPT blow-count (blows per foot) greater than 50.												

The test boring logs from the as-built plans are enclosed with this memorandum. The depth of borings ranged from 16.2 feet to 30.8 feet from the existing ground before the construction of the bridge. The top of decomposed rock sloped eastward from EL 184 feet at the west end (Abutment A) to EL 165 feet to the east (Abutment B).

Existing Bridge Foundation

The bridge structural elements are supported on HP10x42 piles, driven into the decomposed layer. The as-built plans list each driven pile length for the piers, and averaged pile lengths for the east bound lane and west bound lane abutments. Details about pile tip estimations for the bridge elements are enclosed. Only average pile driven lengths are provided for the abutment locations. Table 2 is a summary of pile data.

Table	Table 2. Summary of Pile Tip Elevations and Pile Penetration in Decomposed Rock												
Structure	Traffic	Boring	Boring		stimated Tip EL (Penetration into posed Rock					
Structure	Lane	No. ⁽¹⁾	Bottom EL (ft.)	Max. (Shallow)	Min. (Deep)	Ave.	DR Top EL (ft.)	Average Pile Penetration (ft.)					
Abutment A	W.B.L	1	174.0			179.6	184.0	4.4					
E.B.L 2 172.2 176.9 182.6 5.7													
Pier 1 W.B.L 4 172.9 176.5 160.0 170.8 178.1 7.3													
	E.B.L	4	172.9	175.0	170.0	172.5	178.1	5.6					
Pier 2	W.B.L	6	157.7	159.7	149.1	153.4	167.9	14.5					
	E.B.L	5	148.7	160.0	150.8	156.3	169.0	12.7					
Pier 3	W.B.L	8	147.3	158.4	151.3	155.3	162.7	7.4					
	E.B.L	7	151.7	163.2	152.0	158.5	163.7	5.2					
Abutment B W.B.L 10 144.7 160.5 165.3 4.8													
	E.B.L 9 153.4 159.6 165.1 5.5												
Notes: (1)	Boring N	o. 4 is loc	ated at Pie	er-2 W.B.L a	rea and a	assumed fo	or Pier-2 E. B	.L calculations.					

Based on review of the as-built plans, the test borings terminated at auger refusal, and the piles were driven to a refusal penetration criterion. The average depth of pile penetration into the bearing layer (decomposed rock) ranged from 4.4 feet to 14.5 feet. The historic borings consistently encountered a layer of decomposed rock, the top of which became deeper from west to east.

Proposed Validation Borings

Following are noted during the development of current test boring plans.

- a) The modification to the foundation elements proposed for the current project is expected to be similar to the existing foundation type - a deep foundation consist of driven HP 10x42 piles, bearing in the decomposed rock layer.
- b) The design will be based on the results of existing borings and proposed deep verification borings. The verification borings will be for the validation of the subsurface profile in historic borings.
- c) The borings will be drilled on the south side of existing bridge at the following locations: Abutment A (Boring B-A1-5), middle of the bridge (Boring B-A2-1 in the vicinity of proposed T-Ramp location closer to Pier-1), and Abutment B (Boring B-A1-6).

The locations of three borings are included in the in the attached test boring plan. The validation soil borings will be extended to EL 140 or to auger refusal, whichever occurs first. If the auger refusal occurs first, a 10 feet of rock coring will be performed, with coring depth extending beyond the soil auger refusal depth.

Siva K. Kesavan

Ina Kisavar.

Enclosures: Figure 1: Existing Bridge Plan

Figure 2: Existing Bridge Elevation
Figure 3: Historic Boring Location Plan

Picture 1: View of Existing Bridge – Looking North

Historic Boring Logs (1 sheet)

Existing Pile tip Estimations (4 sheets)

Project (current) Boring Locations (5 Sheets)

Figure 1: Existing Bridge Plan (Reference: VDOT, 1979, Sheet 1 of 47)

Figure 2: Existing Bridge Elevation (Reference: VDOT, 1979, Sheet 2 of 47)

Figure 3: Historic Borings – Location Plan (Reference: VDOT, 1979, Sheet 45 of 47)

Picture 1: View of Existing Bridge -Looking North, Express Lanes Between Pier-1 and Pier 2 (Photo: Google Earth -Street View)

فسنسدر مستدعيك بسع بدويه فالمقامة والمستحدية وينجمه لأسادها فالمروا فأستاها

and the second s

26"

Estimation of Pile Tip Elevations

Project: I-95 Express Spot Improvement at Opitz Blvd.

Prince Williams Co. VA

Chk by:

Prep by: skk

Sheet No. 1 of 4

Date:

9/20/2021

WRA # 45893-001

Pier 1 -W.	B.S													
Cap Bottom Data: Pile Depth (ft) Ref. Calculated Pile Tip Elevation (ft)														
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6
I	186.5	11.0 12.6 16.0 13.0 16.0 14.8 187.51 176.5 174.9 171.5 174.5 171.5											172.7	
II	186.9	15.0	15.1	16.0	15.1	12.7	13.0	187.85	172.9	172.8	171.9	172.8	175.2	174.9
III	187.1	24.3	21.3	20.3	23.2	18.2	28.1	188.12	163.8	166.8	167.8	164.9	169.9	160.0

Stastical R	lesults:								
Pile Tip EL	(ft.)								
Max	176.5								
Min 160.0									
Mean, μ	170.8								
Std.Dev σ	4.3								
μ - βσ 160.9									
β = 2.33									

Pier 1 -E.B	.S												Stastical R	esults:
Cap	Bottom	Data: Pile	Depth (ft)				Ref.	Calculated	d Pile Tip El	evation (f	t)		Pile Tip Ele	eV.
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Max	175.0
IV	187.3	16.3	18.3	14.3	13.3	15.3	188.33	172.0	170.0	174.0	175.0	173.0	Min	170.0
V	187.0	15.2	15.2	16.5	14.3	17.1	187.95	172.8	172.8	171.5	173.7	170.9	Mean, μ	172.5
VI	186.6	14.1	14.0	14.1	13.1	16.1	187.60	173.5	173.6	173.5	174.5	171.5	Std.Dev σ	6.0
VII	186.3	14.4	16.3	16.3	16.4	16.3	187.30	172.9	171.0	171.0	170.9	171.0	μ - βσ	158.5
										β =	2.33			

Estimation of Pile Tip Elevations

Project: I-95 Express Spot Improvement at Opitz Blvd.

Prince Williams Co. VA

WRA # 45893-001

Prep by: skk Sheet No. 2 of 4

Chk by: Date: 9/20/2021

Pier 2 -W.	.B.S											Stastical R	esults:
Cap	Bottom	Data: Pile	Depth (ft)									Pile Tip EL	(ft.)
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6	Raw - 7	Raw - 8	Raw - 9	Raw - 10	Max	159.7
I	168.99	15.5	10.5	11.2	11.0	10.3	13.3	12.6	20.9	16.5	15.5	Min	149.1
11	169.29	20.7	16.6	15.7	19.4	15.7	20.6	17.5	18.6	17.6	18.7	Mean, μ	153.4
III	170.66	20.6	18.4	20.6	Std.Dev σ	3.1							
Cap	Ref.	Calculated	l Pile Tip El	evation (f	t)							μ - βσ	146.2
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6	Raw - 7	Raw - 8	Raw - 9	Raw - 10	β =	2.33
I	169.99	154.5	159.5	158.8	159.0	159.7	156.7	157.4	149.1	153.5	154.5		
П	170.29	149.6	153.7	154.6	150.9	154.6	149.7	152.8	151.7	152.7	151.6		
III	171.66	151.1	153.3	152.1	152.5	153.3	151.2	152.2	150.5	149.2	151.1		

Pier 2 -E.B	3.S											Stastical R	esults
Cap	Bottom	Data: Pile	Depth (ft)									Pile Tip EL	(ft.)
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6	Raw - 7	Raw - 8	Raw - 9	Raw - 10	Max	160.0
IV	169.70	18.6	18.7	18.8	18.8	13.2	18.8	19.9	17.8	18.7	17.7	Max	150.8
V	169.39	10.9	10.4	11.6	10.6	11.0	10.7	10.8	13.9	13.7	11.6	Mean, μ	156.3
VI	169.05	10.7	10.9	10.7	12.1	11.8	12.0	11.8	15.8	14.3	14.8	Std.Dev σ	2.8
VII	168.73	11.8	12.0	12.0	13.5	12.8	13.8	14.3	14.9	15.9	14.7	μ - βσ	149.7
Cap	Ref.	Calculated	l Pile Tip El	levations								β =	2.33
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Raw - 6	Raw - 7	Raw - 8	Raw - 9	Raw - 10		
IV	170.7	152.1	152.0	151.9	151.9	157.5	151.9	150.8	152.9	152.0	153.0		
V	170.4	159.5	160.0	158.8	159.8	159.4	159.7	159.6	156.5	156.7	158.8		
VI	170.1	159.4	159.2	159.4	158.0	158.3	158.1	158.3	154.3	155.8	155.3		
VII	169.7	157.9	157.7	157.7	156.2	156.9	155.9	155.4	154.8	153.8	155.0		

Estimation of Pile Tip Elevations

Project: I-95 Express Spot Improvement at Opitz Blvd.

Prince Williams Co. VA

Chk by:

Prep by: skk

Sheet No. 3 of 4

Date: 9/20/2021

45893-001 WRA#

Pier 3 -W.	B.S												Stastical R	esults:
Cap	Bottom	Data: Pile	Depth (ft)				Ref.	Calculated	d Pile Tip E	evation (f	t)		Pile Tip EL	(ft.)
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Max	158.4
I	180.9	28.1	28.1	26.8	30.6	30.5	181.92	153.8	153.8	155.1	151.3	151.4	Min	151.3
П	181.9	24.4	24.6	24.5	24.7	24.5	182.92	158.5	158.3	158.4	158.2	158.4	Mean, μ	155.3
III	181.5	21.0	28.2	27.8	27.0	28.0	182.52	161.5	154.3	154.7	155.5	154.5	Std.Dev σ	2.9
	į.										μ - βσ	148.6		
												β =	2.33	

Pier 3 -E.B	3.S												Stastical R	esults:
Cap	Bottom	Data: Pile	Depth (ft)				Ref.	Calculated	l Pile Tip El	evation (f	t)		Pile Tip EL	(ft.)
No.	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	EL (ft)	Raw - 1	Raw - 2	Raw - 3	Raw - 4	Raw - 5	Max	163.2
IV	181.3	29.9	28.0	20.0	30.3	30.3	182.26	152.4	154.3	162.3	152.0	152.0	Min	152.0
V	181.3	20.0	22.1	20.3	21.8	25.3	182.28	162.3	160.2	162.0	160.5	157.0	Mean, μ	158.5
VI	180.9	21.0	22.0	21.1	21.4	23.2	181.94	160.9	159.9	160.8	160.5	158.7	Std.Dev σ	3.8
VII 180.6 20.7 27.9 20.6 18.4 26.3 181.61 160.9 153.7 161.0 163.2 155.3										μ - βσ	149.6			
										β =	2.33			

Project: I-95 Express Spot Improvement at Opitz Blvd.

Prince Williams Co. VA

45893-001 WRA#

Prep by: skk

Chk by:

Sheet No. 4 of 4

Date: 9/20/2021

		Pile Cap		Pile	Pile
		Bottom	Ref.	Length	Tip
		EL (ft)	EL (ft)	L (ft.)	EL (ft.)
Abutment A	WBL	205.64	206.64	27.0	179.6
	EBL	205.64	206.64	29.7	176.9
Abutment B	WBL	201.88	202.88	42.4	160.5
	EBL	201.88	202.88	43.3	159.6

			Boring	Pile Tip E	L (ft.)		Elev. Of	Pile
Stur.	Traffic	Boring	Bott.	Max.	Min.	Ave.	DR Top	Penet.
	Lane	No.	EL (ft.)	(Shallow)	(Deep)	Ave.	(ft.)	(ft.)
Abut.A	W.B.L	1	174.0			179.6	184.0	4.4
Abut.A	E.B.L	2	172.2			176.9	182.6	5.7
Pier 1	W.B.L	4	172.9	176.5	160.0	170.8	178.1	7.3
	E.B.L	4	172.9	175.0	170.0	172.5	178.1	5.6
Pier 2	W.B.L	6	157.7	159.7	149.1	153.4	167.9	14.5
riei Z	E.B.L	5	148.7	160.0	150.8	156.3	169.0	12.7
Pier 3	W.B.L	8	147.3	158.4	151.3	155.3	162.7	7.4
riei 3	E.B.L	7	151.7	163.2	152.0	158.5	163.7	5.2
Abut.B	W.B.L	10	144.7			160.5	165.3	4.8
Abut.b	E.B.L	9	153.4			159.6	165.1	5.5

APPENDIX C

Subsurface Investigation Records

APPENDIX C.1

Test Boring Summary

Test Boring	- Complete	Summary
--------------------	------------	---------

Test Hole Purpose & Location Northing Easting (ft.) (ft.	Notes
Ref. ID (ft.) (ft.	
B-A1-1 East Bound Opitz Blvd 355465.6391 3626202.7403 Opitz Blvd 63+25 41 RT 212.5 15.0 N/E 1 12.0 4.0 B-A1-2 East Bound Opitz Blvd 355436.0442 3626298.2607 Opitz Blvd 64+25 41 RT 214.2 20.0 N/E 1 11.0 7.0 B-A1-3 Retaining wall design 355433.4805 3626245.1215 Opitz Blvd 63+75 59 RT 209.4 30.0 N/E	
2 B-A1-2 East Bound Opitz Blvd 355436.0442 3626298.2607 Opitz Blvd 64+25 41 RT 214.2 20.0 N/E 1 11.0 7.0 3 B-A1-3 Retaining wall design 355433.4805 3626245.1215 Opitz Blvd 63+75 59 RT 209.4 30.0 N/E <	
B-A1-3 Retaining wall design 355433.4805 3626245.1215 Opitz Blvd 63+75 59 RT 209.4 30.0 N/E	
B-A1-4 Retaining wall design 355390.5715 3626336.5168 Opitz Blvd 64+75 73 RT 203.9 28.8 23.5 180.4	
B-A1-5 Abut A Opitz Br. 355408.0699 3626341.9383 Opitz Blvd 64+75 55 RT 214.0 B-A1-6 Abut B Opitz Vr. 355252.1568 3626874.5973 Opitz Blvd 70+30 46 RT 211.6 75.0 56.0 155.6 5.0 12.0 B-PE-1 Opitz Blvd shoulders 355235.5276 3626916.6181 Opitz Blvd 70+75 50 RT 209.8 3.2 N/E 1 4.5 10.5 B-PE-2 Opitz Blvd shoulders 355218.8102 3626963.7834 Opitz Blvd 71+25 52 RT 208.1 3.2 N/E 1 3.0 11.0 B-A2-1 Abut.C for T-Ramp 355278.6864 3626597.1158 T-Ramp 27+10 20 RT 188.0 59.0 23.5 164.5 7.0 17.0 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	
B-A1-6 Abut B Opitz Vr. 355252.1568 3626874.5973 Opitz Blvd 70+30 46 RT 211.6 75.0 56.0 155.6 5.0 12.0 B-PE-1 Opitz Blvd shoulders 355235.5276 3626916.6181 Opitz Blvd 70+75 50 RT 209.8 3.2 N/E 1 4.5 10.5 PE-2 Opitz Blvd shoulders 355218.8102 3626963.7834 Opitz Blvd 71+25 52 RT 208.1 3.2 N/E 1 3.0 11.0 B-A2-1 Abut.C for T-Ramp 355278.6864 3626597.1158 T-Ramp 27+10 20 RT 188.0 59.0 23.5 164.5 7.0 17.0 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9	
6 B-PE-1 Opitz Blvd shoulders 355235.5276 3626916.6181 Opitz Blvd 70+75 50 RT 209.8 3.2 N/E 1 4.5 10.5 7 B-PE-2 Opitz Blvd shoulders 355218.8102 3626963.7834 Opitz Blvd 71+25 52 RT 208.1 3.2 N/E 1 4.5 10.5 8 B-A2-1 Abut.C for T-Ramp 355278.6864 3626597.1158 T-Ramp 27+10 20 RT 188.0 59.0 23.5 164.5 7.0 17.0 9 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 10 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9	Not drilled
7 B-PE-2 Opitz Blvd shoulders 355218.8102 3626963.7834 Opitz Blvd 71+25 52 RT 208.1 3.2 N/E 1 3.0 11.0 8 B-A2-1 Abut.C for T-Ramp 355278.6864 3626597.1158 T-Ramp 27+10 20 RT 188.0 59.0 23.5 164.5 7.0 17.0 9 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 10 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	
8 B-A2-1 Abut.C for T-Ramp 355278.6864 3626597.1158 T-Ramp 27+10 20 RT 188.0 59.0 23.5 164.5 7.0 17.0 9 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 10 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	
9 B-A3-1 T-Ramp MSE Wall 355172.3987 3626568.6573 T-Ramp 26+00 20 RT 187.0 40.0 20.0 167.0 15.0 4.0 10 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	
10 B-A3-2 T-Ramp MSE Wall 355083.9063 3626512.2718 T-Ramp 25+00 12 LT 189.2 40.0 20.7 168.5 18.0 18.0 11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	Note (1)
11 B-A3-3 T-Ramp MSE Wall 354978.3553 3626520.1235 T-Ramp 24+00 23 RT 185.4 30.0 19.5 165.9 15.0 5.0	
12 B-A3-4 T-Ramp MSE Wall 354937.3133 3626479.5403 T-Ramp 23+50 6 LT 187.2 30.0 22.0 165.2 18.0 18.0	Note (2)
13 B-A3-5 T-Ramp MSE Wall 354785.0818 3626468.6903 T-Ramp 22+00 35 RT 183.5 20.0 N/E 19.0 9.0	
14 B-A3-6 T-Ramp MSE Wall 354697.7435 3626407.9003 T-Ramp 21+00 2 LT 184.9 20.0 N/E 19.0 18.0	
15 B-A3-7 T-Ramp MSE Wall 354591.7507 3626417.4743 T-Ramp 19+99 33 RT 181.6 15.0 N/E 15.0 9.0	
16 B-A3-8 T-Ramp MSE Wall 354503.8875 3626358.4498 T-Ramp 19+00 4 LT 181.1 10.0 N/E 19.0 23.0	
17 B-A3-9 Roadway south of T ramp 354398.3209 3626366.6296 T-Ramp 17+99 29 RT 179.9 10.0 N/E 12.0 9.0	Note (3)
18 B-A4-1 I-95 XBL MOT 355034.2590 3626573.5922 I-95 XBL 727+80 17 RT 186.1 8.0 N/E 1 14.0 10.0	
19 B-A4-2 I-95 XBL MOT 354720.1225 3626490.2662 I-95 XBL 724+55 17 LT 183.0 8.0 N/E 1 17.0 8.0	
20 B-A4-3 I-95 XBL MOT 354430.0292 3626413.7890 I-95 XBL 721+55 18 RT 180.2 8.0 N/E 1 17.0 8.0	
21 B-A4-4 I-95 XBL MOT 354157.6633 3626304.2854 I-95 XBL 718+64 18 LT 179.0 8.0 N/E 1 15.0 9.0	
22 B-A4-5 I-95 XBL Slip Ramp 351117.2654 3625366.6140 I-95 XBL 686+81 18 LT 172.1 8.0 N/E 1 16.0 9.0	
23 B-A4-6 I-95 XBL Slip Ramp 350741.8477 3625229.2087 I-95 XBL 682+81 18 RT 168.3 8.0 N/E 1 15.0 10.0	
24 B-A4-7 I-95 XBL Slip Ramp 349743.9644 3624827.1230 I-95 XBL 672+06 18 LT 149.8 8.0 N/E 1 16.0 9.0	
25 B-A4-8 I-95 XBL Slip Ramp 349415.1818 3624707.6334 I-95 XBL 668+56 18 LT 140.3 8.0 N/E 1 15.0 33.0	

Note(1) 7.0"**ASPH** + 6.0"**CONC** + 17.0"**Base** Note(2) 15.0"**ASPH** + 5.0" **Base** + 4.0" **CONC**

Note(3) 9.0"**ASPH** + 3.0"**CONC** + 3.0"**ASPH** + 9.0"**Base**

APPENDIX C.2

Test Boring Logs

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

STATION: 63+25

B-A1-1 PAGE 1 OF 1

OFFSET: 41 RT

	Virgir	nia Dep	artr	ment (of T	ransp	orta	tion		STATION: 63+25	2620	2.74	103 ft /A So	uth
	F	IELD	D	ATA	\					Date(s) Drilled: 11/9/2021 - 11/9/2021	I	LAB	DAT	Ά
DEPTH (ft)	STANDARD PENETRATION (#) PENETRATION TEST HAMMER BLOWS		SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY BA		° STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
2 21 4 6 8 20 8 10 12 20 14 14 12 20 14 14 12 20 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	2 3 2 2 05 3 6 1 5 6	3 33 4 100 67 100 8 87	X	1.5 3.5 6 7.5 8.5 10 11 12.5 13.5 15						1.0 / 212.5 1.2" Asphalt ASPH 1.0 / 211.5 4" Subbase material, Light gray, medium to coarse, SAND AND GRAVEL, trace Silt, dry CRA 1.33 / 211.17 Fill, Tan-gray, FAT CLAY WITH SAND, trace wood, medium stiff, moist. Wood stuck at spoon tip and there were no sample recovered. sample was later retrived with 3" spoon CH 8.5 / 204.0 Fill, Tan, fine to medium, SILTY SAND, medium dense, moist SM	68	41	8.3 35.2 30.0 24.1 21.3	76.0

REMARKS: Rig Type: Acker XLS.
Boring was offset 5' towards east due to undergroun utility. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 1 **B-A1-1**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 64+25 OFFSET: 41 RT

NORTHING: 355436.0442 ft SURFACE ELEVATION: 214.2 ft Easting: 3626298.2607 ft COORD, DATUM: VA South

1												SURFACE ELEVATION: 214.2 ft COORD. DA	TUN	√l: V	'A So	uth
			F	ΞE	LD	D	ATA					Date(s) Drilled: 11/9/2021 - 11/9/2021	L	LAB	DAT	Ά
DEPTH (ft)	ELEVATION (ft)	GOVERNO	PENETRATION TEST 6 HAMMER BLOWS		SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	DII	STRATA LEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
1-89 EXPRESS LANE: OPITZ BLVD BORINGS, GP.C.SPT.7.GD I:ginVersion 10.02.00.04:1720/22/WRA	200	3 3 3 4 4 5 5	5 10	3 2 4 5 111 8	33 67 80 20 100 100 100	X	1.5 3.5 5 6 7.5 8.5 10 11 12.5 13.5 16 17.5 18.5 20					0.0 / 214.2 11" Asphalt ASPH 0.92 / 213.28 7" Subbase material, Light gray, medium to coarse, SAND AND GRAVEL, trace Silt, dry CRA 1.5 / 212.7 Fill, Tan-gray, FAT CLAY WITH SAND, trace to some Gravel, medium stiff, moist. CH 11.0 / 203.2 Fill, Red, tan, multi color, SANDY LEAN CLAY, very stiff, moist CL 14.0 / 200.2 Possible Fill, Tan, fine to medium, SILTY SAND, trace elastic fine, medium dense, moist SM 17.5 / 196.7 Brown, tan, fine to medium, POORLY GRADED SAND WITH SILT, medium dense, moist SP-SM 20.0 / 194.2 Boring trerminated at 20ft			21.733.721.429.826.616.414.813.0	76.0

REMARKS: Rig Type: Acker XLS.
Boring was offset 5' towards west due to undergroun utility. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 1 **B-A1-2**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: RETAINING WALL

B-A1-3 PAGE 1 OF 1

OFFSET: 59 RT STATION: 63+75

NORTHING: 355433.4805 ft Easting: 3626245.1215 ft

				•			•				SURFACE ELEVATION: 209.4 ft COORD. DA	TUN	√l: V	'A So	uth
			FIE	D [DATA	۸					Date(s) Drilled: 10/11/2021 - 10/11/2021	I	_AB	DAT	A
			IL				RO	СК			Drilling Method(s): HSA SPT Method: Automatic Hammer				
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST	HAIMINIEK BLOWS	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	STRATA	SINIOC	STRATALEGEND	Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
1-95 EXPRESS LANE. OPITZ BLVD BORINGS GPJ: SPT7.GDT: gINT_version 10.02.00.04:17.02/12.23/WRA 1.95 EXPRESS LANE. OPITZ BLVD BORINGS GPJ: SPT7.GDT: gINT_version 10.02.00.04:17.02/12.23/WRA 1.95 EXPRESS LANE. OPITZ BLVD BORINGS GPJ: SPT7.GDT: gINT_version 10.02.00.04:17.02/12.23/WRA	205	1 3 5 4 3 10 5 8 4 7 7 16 18 20 29 26 11 26 39 50/3	3 5 5 6 6 7 1 1 1 2 1 1 2 1 2 7 3 9 1 2 7 8	33 X 33 X 33 X 33 X 33 X 33 X 34 X 34 X	1.5 3 5 6.5 7.5 9 10 11.5 12.5 14 15 16.5 17.5 19 23.5 25 28.5 30						0.0 / 209.4 4" Topsoil TOPS 0.2 / 209.2 Fill, Light brown, fine to medium, SILTY SAND FILL, trace roots, loose, moist SM 3.0 / 206.4 Possible fill, Tan, fine to medium, SILTY SAND, medium dense, moist SM 13.0 / 196.4 Residual, Light gray, fine to medium, POORLY GRADED SAND WITH SILT, dense, moist SP-SM 15.0 / 194.4 Decomposed Rock, Gray, black, medium to coarse, highly weathered, DECOMPOSED GRAPHITIC SCHIST, lithified, very dense, dry MST 30.0 / 179.4 Boring trerminated at 30ft			18.7 15.2 13.9 17.5 16.0 17.8 19.6 11.5	25.0
I-95 EXPRESS LA															

REMARKS: Rig Type: Acker XLS.
Boring was offset 20' west and 5' south. As drilled boring elevatoin is 3' lower than the original location. Bulk sample collected from 0'-8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 1 **B-A1-3**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: RETAINING WALL

B-A1-4PAGE 1 OF 1

PAGE 1 OF 1 B-A1-4

STATION: 64+75 OFFSET: 73 RT

NORTHING: 355390.5715 ft Easting: 3626336.5168 ft COORD. DATUM: VA South

												SURFACE ELEVATION: 203.9 ft COORD. DATUM:	VA	Sou	uth
			FII	ELC	D O	ATA						Date(s) Drilled: 10/12/2021 - 10/12/2021	LA	B DA	ATA
(#) (HEQ30	טבר וח (יו)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS T	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	(%)	ROCK QUALITY DESIGNATION	DI	STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 23.5 ft DEPTH FIELD DESCRIPTION OF STRATA 0.0 / 203.9	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)
2	2		10 14 5	67	X	1 2.5					9/	12" Asphlat ASPH 1.0 / 202.9 12" Subbase material, Light gray, medium to coarse, SAND AND			19.9
	1	200	3 4 6	100	X	3.5 5						\(\text{GRAVEL, trace Silt, dry CRA} \) 2.0 / 201.9 Possible fill, Tan-brown, fine to medium, SILTY SAND, some elastic fine, loose, moist SM			20.8
	ł		3 6 7	100	X	6 7.5						6.5 / 197.4 Brown-tan, medium to coarse, SILTY SAND WITH FINE			13.6
ŀ	0	195	2 4 7	100	· X	10					330	GRAVEL, medium dense, moist SM/GM 9.0 / 194.9 Light brown-light gray, fine to medium, POORLY GRADED SAND WITH SILT, medium dense, moist SP-SM			18.6
1	2		4 6 5	100	X	11 12.5						OAND WITH OILT, Mediam dense, moist of July			16.6
	4	190	5 7 8	100	X	13.5									15.6
/20/22:WRA	6 8 		20 23 17	100	X	16 17.5						16.0 / 187.9 Brown-red, medium to coarse, SILTY SAND, trace fine gravel, dense, moist SM			15.7
0.02.00.04:1	0	185	7 10 14		X	18.5						19.0 / 184.9 Residual, Gray, black, highly weathered, DECOMPOSED GRAPHITIC SCHIST, lithified, very stiff, damp MST			24.4
VT_version 1	4		50/3"	100		21 21.3						21.0 / 182.9 Decomposed Rock, Gray, DECOMPOSED GRAPHITIC SCHIST, very dense, dry. Water was noted between rock layers near 25ft.			11.1
SPT7.GDT:gll	4	180	50/4"	100	0⊠	23.5 23.9						MST			11.1
56 EXPRESS LANE. OPITZ BLVD BORINGS.GPJ.SPT7.GDT.gINT_version 10.02.00.04:1/20/22:WRA	ł		50/3"	100	00⊠	28.5 28.8						28.8 / 175.1 Boring trerminated at 28.8ft			13.5

REMARKS: Rig Type: Acker XLS.
Boring was offset 15' south. As drilled boring elevatoin is 1' lower than the original location. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: BRIDGE

B-A1-6 PAGE 1 OF 3

OFFSET: 46 RT STATION: 70+30

NORTHING: 355252.1568 ft SURFACE ELEVATION: 211.6 ft Easting: 3626874.5973 ft COORD, DATUM: VA South

												SURFACE ELEVATION: 211.6 ft COORD. DA	TUI	M: V	'A So	uth
			FI	ELD) D	ATA						Date(s) Drilled: 11/8/2021 - 11/8/2021	ı	LAB	DAT	Ά
DEPTH (#)	(#) NOITVX3 13	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	(%)	ROCK QUALITY DESIGNATION	DI	STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 58.5 ft DEPTH FIELD DESCRIPTION OF STRATA	Н ГІДОІВ ГІМІТ	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
	+	6				0.5						¬ 0.0 / 211.6	LL	-		
2		10	7 5		X	2 3.5						5" Asphlat ASPH 0.42 / 211.18 12" Subbase material, Light gray, medium to coarse, SAND AND GRAVEL, trace Silt, dry CCA 1.42 / 210.18			6.6	
6		05 W	3 /OH/4" 2/8"		<u> </u>	5 6						Fill, Light brown, fine to medium SILTY SAND FILL, trace elastic fine, loose, moist Layer of 6" thick, mottled, tan-gray, FAT CLAY binder			19.3	
8	1	05	17		X V	7.5 8.5						exists from 6'-6.5' SM 7.5 / 204.1 Fill, Light gray, light brown, fine to medium, CLAYEY			18.9	
10	20	00 2	3 4			10 11						SAND, loose, moist SC			13.3	
12		3	3 4		<u>/- \</u>	12.5 13.5									18.7	
-	3	3	3 3		<u>()</u>	15 16							35	11	15.6	23.0
74:1/20/22:W	1	95 3	4 4	100	X	17.5 18.5									15.8	
10.02.00. 20.00.	+		6 4	100	X	20						20.0 / 191.6 Fill, Tan, light brown, fine to coarse, SAND WITH			15.6	
:gINT_versic	21	90				23.5						GRAVEL, trace Clay, loose, damp SP/GP				
24:SPT7:GD:	3		4 3	100	X	25						25.0 / 186.6 Fill, Tan, gray, fine to medium, SILTY, CLAYEY SAND,			16.1	
7D BORINGS GP	3 -	85 -	6 9	67	X	28.5						trace root, medium dense, moist SC-SM			26.6	
ANE. OPITZ BL.	18	80	Š									30.0 / 181.6 Fill, Light brown, fine to coarse, SILTY SAND WITH GRAVEL, medium dense, moist SM/GM				
36 EXPRESS I	-	5	9 8	47	X	33.5 35									16.5	

REMARKS: Rig Type: Acker XLS.

Boring was offset 20' towards east due to undergroun utility. As drilled boring elevatoin is the same as the original location. Bulk sample collected from 0' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 3 **B-A1-6**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: BRIDGE

B-A1-6 PAGE 2 OF 3

OFFSET: 46 RT STATION: 70+30

Easting: 3626874.5973 ft COORD. DATUM: VA South NORTHING: 355252.1568 ft SURFACE ELEVATION: 211.6 ft

L											SURFACE ELEVATION: 211.6 ft COORD. DA	NI UI	/I:_V	'A So	uth
				ם כ	ATA	\					Date(s) Drilled: 11/8/2021 - 11/8/2021 Drilling Method(s): HSA	I	AB	DAT	Α
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	DI	STNIOL	STRATALEGEND	SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER FIRST ENCOUNTERED AT 58.5 ft DEPTH FIELD DESCRIPTION OF STRATA	Е LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
38 40 42	175]3 3 4	87	X	38.5 40						38.0 / 173.6 Residual, Gray, fine to medium, SILTY SAND, loose, moist SM			18.3	
44	165	2 4 8	20	X	43.5 45						43.5 / 168.1 Gray, LEAN CLAY, stiff, damp CL	35	11	19.2	98.0
48 50 52	160	8 20 19	80	X	48.5 50						48.5 / 163.1 Black, SILT, highly weathered, DECOMPOSED GRAPHITIC SCHIST, lithified, some rock fragments, very stiff to hard, dry to wet below 58.5' Hard augering below 68.5' MST			17.2	
54 56 58	155	50/4"	20	X	53.5 55									12.1	
58	7 - - - 150	26 20 50	100) V	58.5 60									11.9	
60 62 64 66 68 70 70 72 72 72 72 72 72 72 72 72 72 72 72 72		115 50/1"	40	X	63.5 65									14.9	
68	145	150/2"	13	X	68.5 70									19.7	
72	140														

REMARKS: Rig Type: Acker XLS.

Boring was offset 20' towards east due to undergroun utility. As drilled boring elevatoin is the same as the original location. Bulk sample collected from 0' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 2 OF 3 **B-A1-6**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: BRIDGE

B-A1-6 PAGE 3 OF 3

STATION: 70+30 OFFSET: 46 RT

NORTHING: 355252.1568 ft Easting: 3626874.5973 ft

		Virgini	a Dep	parti	ment ·	of Tr	ransp	orta	tion		NORTHING: 355252.1568 ft				
		FI	ELC	D	ATA	\					Date(s) Drilled: 11/8/2021 - 11/8/2021	I	AB	DAT	Α
DEDTH (#)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	(%)	ROCK QUALITY DESIGNATION O	DI	stnior	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 58.5 ft DEPTH FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
1-95 EXPRESS LANE- OPITZ BLVD BORINGS.GPJ:SPT7.GDT:gINT_version 10.02.00.04:1/20/22:WRA	4 -	15 50/2"	40	17. 71	73.5						75.0 / 136.6 Boring terminated at 75ft			16.2	

REMARKS: Rig Type: Acker XLS.

Boring was offset 20' towards east due to undergroun utility. As drilled boring elevatoin is the same as the original location. Bulk sample collected from 0' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 3 OF 3 **B-A1-6**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

NORTHING: 355278.6864 ft

STATION: 27+10

B-A2-1 PAGE 1 OF 2

OFFSET: 20 RT Easting: 3626597.1158 ft

		v ii giir i		lbon c		J	i ali iop	-			SURFACE ELEVATION: 188.0 ft COORD. DA				uth
		F	IELI	D D	ATA						Date(s) Drilled: 11/22/2021 - 11/23/2021		LAB	DAT	Ά
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION O	DII		STRATA LEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 23.5 ft DEPTH FIELD DESCRIPTION OF STRATA	Е ГІФПР ГІМІТ	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
. 2 -	- - 185 -	3	60 93	V: \	1.5 3 3.5 5					900	0.0 / 188.0 7" Asphalt ASPH 0.6 / 187.4 6" Concrete CONC 1.1 / 186.9 17" Subbase material, Gray, medium to coarse, SAND AND GRAVEL, trace Silt, very dense, dry CRA 2.5 / 185.5			10.1	
8 -	- - 180 -]	67 4 80	<u>/- \</u>	7.5 8.5 10						Fill, Black, brown shadding, fine to medium, SILTY SAND, some elastic fine, loose, moist SM 6.5 / 181.5 Possible fill, Tan, black spotting at 13.5'-15', fine to medium, POORLY GRADED SAND WITH SILT, trace Gravel, loose to medium dense, moist SP-SM			12.7	22.0
12 -	· 175 ·	.4 .8	8 100	<u>/\</u>	12.5 13.5 15									10.8	
18 -	- 170 -	5 8 4 7	7 100 8 87	(·)	16 17.5 18.5 20									16.2	
20 22 24 26 28 30 32 34 36 REM Bori	7 ¹⁶⁵	4 5	9 100	o <mark>X</mark>	23.5 25						23.5 / 164.5 Residual, Gray, black, lithified, SILT derived from decomposition of parent rock, trace rock fragments, hard, moist ML			23.1	
28 -	- 160 -	15 20 5	87	. 🔀	28.5									10.1	46.0
34 -	- 155 - -		53	· 🔀	33.5 35									10.0	
REN Bori	MARKS	3: Rig Type	e: Ach	(er)	(LS.	rille	d on	West	tern	sho	ulder of I-95 express lane. Cave-in at 55.3'. Hole backfilled with soil	P	AGI	E 1 C	OF 2
cutti	ng and	patched w	ith co	old a	sphal	t at	the s	urfac	e.	JI 1U	and of 1-00 express rane. Gave-in at 50.0 . Hole backlined with SUII		B-/	A2 -	.1

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A2-1

PAGE 2 OF 2

OFFSET: 20 RT STATION: 27+10

NORTHING: 355278.6864 ft Easting: 3626597.1158 ft SURFACE ELEVATION: 188.0 ft COORD. DATUM: VA South

										SURFACE ELEVATION: 188.0 π COORD. DA	1101	VI. V	A 50	uın
	FII	ELC	D	ATA	4					Date(s) Drilled: 11/22/2021 - 11/23/2021	'	LAB	DAT	Ά
	SOIL					RO	СК	(Drilling Method(s): HSA			(0	(9)
			0	بر ا	[e		DI	IP°		SPT Method: Automatic Hammer	١.	X	T (%	FINES CONTENT -#200 (%)
<u>.</u> €	ES NS	(%)	Ä	%	%	>-			님	Other Test(s):	I≝	볼	N. EN.	#20
Ĕ NO.	DN C	ERY	LEG		ER.				EG	Driller: SaLUT, Inc.		<u>E</u>	LNO	Z
DEPTH (II)	NDA ATIO	SOV	핃	=	8	ON A	ΑTΑ	STS	Ι¥Ι	Logger: J. Yadeta	LIQUID LIMIT	STIC	EC	
DEPTH (#) ELEVATION (#)	STA	RE(SAMPLE LEGEND	SAMPLE INTERVAL	W.	ROCK QUALITY DESIGNATION	STRATA	JOINTS	STRATA LEGEND	GROUND WATER	_	PLASTICITY INDEX	TUR	8
	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	Ś	S	CORE RECOVERY (%)	<u> </u>	"		S			-	MOISTURE CONTENT (%)	NES
	п.	o	\	<u>/</u>	Ö					FIELD DESCRIPTION OF STRATA	LL	PI	Σ	<u> </u>
+	-													
38 15	0 -			00.5										
+	14 19	67	V	38.5									10.0	
10	. 26	0.		40									10.0	
+	_													
12 +	-													
14				43.5										
4 +	10 29	93	V	43.5									12.5	
+	10 29 50/5"		<u>/·\</u>	45										
6 +	-													
+														
8 - 14				48.5										
+	.15 29	80	M	40.0									12.4	
0 +	-		<u>/·.\</u>	50										
+														
2 -	-													
13				53.5										
4 +	50/3"	27	X										9.8	
†	-		V·.\	55										
6 +	1													
†	-													
8 13	0 50/4"	60	X	58.5									14.8	
t		60		59						59.0 / 129.0	1		14.0	
										Boring terminated at 59ft				
EMARI	KS: Rig Type:	Ack	er X	KLS.	<u> </u>	<u> </u>		4		I wide of LOS amore less Cours in at SS Of Mala heat SW	P	AGI	E 2 ()F
oring w utting a	as offset 35' to nd patched wit	owar th co	as e Id a	east, d sphal	arille It at	ea on the s	wes	ce.	sno	ulder of I-95 express lane. Cave-in at 55.3'. Hole backfilled with soil			42 -	
											1	_ _/	~~	- 1

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-1

PAGE 1 OF 2

STATION: 26+00 OFFSET: 20 RT

NORTHING: 355172.3987 ft Easting: 3626568.6573 ft

		V118	in mear re	o Glad	1 (1110)	. 01	I I CAI I	apo	i verue	411		SURFACE ELEVATION: 187.0 ft COORD. DATUM			uth
			FIEI	D	DAT	Ά						Date(s) Drilled: 11/22/2021 - 11/22/2021	LA	B DA	ATA
		s o	I L				R	00				Drilling Method(s): HSA			<u></u>
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST	COIL BECOVED (%)	SOIL RECOVERT (%)	SAMPI E INTERVAL	(/#) // (0010 1000	ONE RECOVERT (%) ROCK QUALITY	DESIGNATION	STRATA		SIKAIALEGEND	SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 20.0 ft DEPTH	LIQUID LIMIT	PLASTICITY INDEX	MOISTURE CONTENT (%)
				$\frac{1}{2}$								FIELD DESCRIPTION OF STRATA	LL	PI	2
2 -	185	60/4"		53	3 3.5 5						ို မို	0.0 / 187.0 15" Asphalt ASPH 1.25 / 185.75 9" Subbase material, Gray, medium to coarse, SAND AND GRAVEL, trace Silt, very dense, dry CRA 2.0 / 185.0 Possible fill, Tan, fine to medium, POORLY GRADED SAND	-		6.1
6 -	180	3 5	6	00	7.5							WITH SILT, medium dense, moist SP-SM			13.9
10 -		5 8	9	37	10										13.6
12 -	175	6 6	7 1	00	12.	5									14.3
14 -		8	8	37	15										13.3
18 -	170	6	5	00	17.	5						40.5.4400.5			18.7
18 · 20 \	<u>,</u>	.6 7	10	37	20							18.5 / 168.5 Tan-brown, fine to coarse, SILTY SAND AND GRAVEL, layer of purple Silt from 23.5' to 24.2', medium dense to dense, moist to wet below 20ft. SM/GM			16.8
22	165	7 19	24	37	23.										29.7
26	160	4 21	4	00	28.	5						28.5 / 158.5	-		11 0
30 -		21 50)/4"	00	30							Residual, Gray, black, lithified, SILT derived from decomposition of parent rock, trace rock fragments, hard, moist ML			11.8
24 - 26 - 30 - 32 - 34 - 34 - 36 - 36	. 155	13 21	41 8	30	33. 35										17.4

REMARKS: Rig Type: Acker XLS.
Cave-in at 16.7'. Bulk sample collected from 2' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 2 **B-A3-1**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

PAGE 2 OF 2

STATION: 26+00 OFFSET: 20 RT

NORTHING: 355172.3987 ft Easting: 3626568.6573 ft

		Virginia	a Dep	oarti	ment	of T	ransį	orta	ition		NORTHING: 355172.3987 ft Easting: 3626568 SURFACE ELEVATION: 187.0 ft COORD. DATUM	3.657 : VA	3 ft Sou	uth
		FI	ELD	D	ATA	4					Date(s) Drilled: 11/22/2021 - 11/22/2021	LA	B D	ATA
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	П	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	_	STNIOL	STRATA LEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 20.0 ft DEPTH FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)
S EAFRESS LANE: OF ILZ BLVD BORINGS: GFJ;SF17;GD1:gin1_Version 10;02;00;GF;1720/22;WRA	150	31 _{50/5} "	47		38.5						40.0 / 147.0 Boring terminated at 40ft			18.1

REMARKS: Rig Type: Acker XLS.
Cave-in at 16.7'. Bulk sample collected from 2' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 2 OF 2

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-2

PAGE 1 OF 2

OFFSET: 12 LT STATION: 25+00

NORTHING: 355083.9063 ft SURFACE ELEVATION: 189.2 ft Easting: 3626512.2718 ft COORD, DATUM: VA South

											SURFACE ELEVATION: 189.2 ft COORD. DA				
		FIE	ELC	D	ATA	١					Date(s) Drilled: 11/17/2021 - 11/18/2021	I	_AB	DAT	Ά
		SOIL					RΟ	_			Drilling Method(s): HSA				ୢ
		⊢	(-	(9)		DI	P°		SPT Method: Automatic Hammer	١.	PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
	Œ	ES-	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	>-			STRATA LEGEND	Other Test(s):	LIQUID LIMIT	볼	<u> </u>	#20
DEPTH (#)	<u>N</u>	S NO	ERY	Ë	世	ÉR	틸			EG.	Driller: SaLUT, Inc.	D L	🛓		Ę
<u>ئ</u> ا	ELEVATION (ft)	IDA TIC R B	OVI	Щ	≤	Š	ROCK QUALITY DESIGNATION	STRATA	JOINTS	PAL	Logger: J. Yadeta	l D	읟	ਲ	
占	LE/	ME RA	ŒC	MPI	l l	REC	SK (IR _A		R	GROUND WATER	Ĭ	AS	R	6
	ш	NE NE	IL F	SA	SAN	및 무	ROC	S	ゔ	ST	FIRST ENCOUNTERED AT 20.7 ft DEPTH		□	IST	S
		STANDARD PENETRATION TEST HAMMER BLOWS	S			SO					FIELD DECODIDATION OF OTDATA	<u></u>		9	
+				+/							FIELD DESCRIPTION OF STRATA 0.0 / 189.2	LL	PI		
-											18" Asphalt ASPH				
2 -		25			1.5					Q &.	1.5 / 187.7				
-	•	34 25	100	M	_						18" Subbase material, Gray, medium to coarse, SAND			4.3	
1		20			3 3.5						AND GRAVEL, trace Silt, very dense, dry CRA				
4 🚦	185	3	100) X						Ш	3.0 / 186.2			40.8	
1		5		<u> </u>	5						Gray-brown mix, ELASTIC SILT, medium stiff to stiff,				
3 -		2			6						moist MH				
		5	100	X										42.4	
, [1	8		<u> </u>	7.5										
3		5		 	8.5					S (44)	0.5 / 100.7				
†	180	7	60	X							8.5 / 180.7 Brown, tan, fine to medium, POORLY GRADED SAND			14.3	
0 +	-	8		H	10						WITH SILT, medium dense, moist SP-SM				
1	,	4			11										
2		5	87	X										14.5	21
[6		H	12.5										
, t		6			13.5										
4	175	7 10	80	X										13.9	
†		10		\Box	15										
6	-	5	l , .		16										
+	,	8 10	100) X	17 F									15.3	
8				П	17.5										
-	170	6	0.7	V	18.5						18.5 / 170.7			,,,	
ر ا	170 -	12 25	87	Δ	20						Gray, black, fine to coarse, POORLY GRADE SAND,			14.7	
0	<u>'</u>				20						trace Silt, dense, moist to wet below 20.5ft SP				
1															
2 -															
+					23 5										
4	165	24 50/2"	40	V	23.5						23.5 / 165.7			20.4	
Į	.50	3012	40		25						Residual, Gray, SILT DRIVED FROM DECOMPOSITION OF BED ROCK, hard, dry ML			20.4	
6]				-						OF BED ROOK, Halu, dry ivil				
۲	1														
_ †	1														
8	-	00/0"			28.5					grapicato					
+	160	60/3"	20	X							28.5 / 160.7 Gray, fine to coarse, SILTY AND GRAVEL SIZE			15.6	
0				<u> </u>	30						DECOMPOSED ROCK FRAGMENTS, little elastic fine,				
Į											exteremely dense to dense to extremely dense, dry to				
2 [1										moist SM				
-	•														
1	+	4			33.5										
34	155	13	40	X										15.2	
+	,	20		<u> </u>	35										
6												L			L
		: Rig Type:		_								_		E 1 C	

PAGE 1 OF 2 **B-A3-2**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

PAGE 2 OF 2

OFFSET: 12 LT STATION: 25+00

NORTHING: 355083.9063 ft SURFACE ELEVATION: 189.2 ft Easting: 3626512.2718 ft COORD. DATUM: VA South

SURFACE ELE	EVATION: 189.2 ft COORD. DATUM: VA South
	11/17/2021 - 11/18/2021 LAB DATA
DEPTH (ft) EVATION (ft) EVATION (ft) EVATION (ft) GEOVERY (%) APLE LEGEND Other Lest(s): Duiller: SaTAL FORD Other Lest(s): Double: ATALEGEND ATALEGEND ATALEGEND Other Lest(s): Double: ATALEGEND Other Lest(s): Other Lest(s): Double: ATALEGEND Other Lest(s): Other L	ASTICITY INDEX BROUND MATER GROUND MATER
	DESCRIPTION OF STRATA LL PI
38	arse, SILTY AND GRAVEL SIZE D ROCK FRAGMENTS, little elastic fine, se to dense to extremely dense, dry to moist ed at 40ft 8.6

REMARKS: Rig Type: Acker XLS.

Cave-in at 34.5'. Boring was offset 5' towards south due to undergroun utility. As drilled boring elevatoin is the same as the original location. Bulk sample collected from 1.5' - 8'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 2 OF 2

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

NORTHING: 354978.3553 ft

STATION: 24+00

B-A3-3 PAGE 1 OF 1

OFFSET: 23 RT

Easting: 3626520.1235 ft

												SURFACE ELEVATION: 185.4 ft COORD. DA	TUN	И: V	'A So	uth
			FII	ELC) D	ATA	\					Date(s) Drilled: 11/29/2021 - 11/29/2021	ı	_AB	DAT	Ά
		S	OIL					RO	СК			l =			<u></u>	(%)
	ELEVATION (ft)	STANDARD PENETRATION TEST	HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION		STNIOL	STRATALEGEND	Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER ▼ FIRST ENCOUNTERED AT 19.5 ft DEPTH	= LIQUID LIMIT		MOISTURE CONTENT (%	FINES CONTENT #200 (%)
1	185				\mathcal{H}							0.0 / 185.4				
0 1	1180	6 2 6 2 4 3 3 4 6 4 6 4 8	6 8 6 9	100 100 67		2 3.5 5 6 7.5 8.5 10 11 12.5 13.5 16 17.5 18.5 20						1.25 / 184.15 5" Asphalt ASPH 1.25 / 184.15 5" Subbase material over 4" concrete, Gray, medium to coarse, SAND AND GRAVEL, dry CRA 2.0 / 183.4 Fill, Tan-gray, fine to medium, POORLY GRADED SAND WITH SILT, medium dense, moist SP-SM 6.5 / 178.9 Fill, Gray, fine to medium, CLAYEY, SILTY SAND, some woods, loose, moist SC-SM 8.5 / 176.9 Fill, Brown, LEAN CLAY, stiff, moist CL 11.0 / 174.4 Fill, Brown, fine to medium, POORLY GRADED, SAND WITH SILT, medium dense, moist SP-SM 13.0 / 172.4 Residual, Brown-light brown, fine to medium, POORLY GRADED SAND WITH SILT, medium dense, moist to wet below 19ft. SP-SM	41	16	16.1 18.0 13.5 22.4 12.7 16.8 17.6	89.0
4	160	10	18		/- \	23.5 25 28.5 30						23.5 / 161.9 Residual, Gray, black, lithified, SILT derived from decomposition of parent rock, trace rock fragments, very stiff to hard, moist ML 30.0 / 155.4 Boring terminated at 30ft.			19.1	
	0 2 4 6 6 6 8 8 7	185 ·	(#) REPRETATION TEST	SOIL (1) (2) (3) (4) (4) (5) (4) (5) (5) (6) (7) (7) (8) (9) (10) (1	SOIL (4) (8) ANDARD HAWKER BLOWS 100 165 160 160 165 160 160 160 160 160 160 160 160 160 160	SOIL (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SOIL (#) NOLY (#) SOIL (#) SOI	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SOIL (#) RO (#)	SOIL (%) NO NEED TO NE	SOIL (%) NOLL (%) NOL	SOIL ROCK DIP	Date(s) Drilled: 11/29/2021 - 11/29/2021 Date(s) Drilled: 11/29/2021 - 11/29/2021 Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadet	Date(s) Drilled: 11/29/2021 - 11/29/2021 Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Driller: SaluT, Inc.	Date(s) Drilled: 11/29/2021 - 11/29/2021 LAB Solid Sol	Date(s) Drilled: 11/29/2021 - 11/29/2021 LAB DAT

REMARKS: Rig Type: Acker XLS.
Boring was offset 6' towards north due to underground utility. Cave-in at 25.2'. Hole backfilled with soil cutting and patched with cold asphalt at the surface. Shelby tube sample was taken from an offset boring from 14' - 16'

PAGE 1 OF 1 **B-A3-3**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-5 PAGE 1 OF 1

STATION: 22+00 OFFSET: 35 RT

NORTHING: 354785.0818 ft SURFACE ELEVATION: 183.5 ft Easting: 3626468.6903 ft COORD, DATUM: VA South

1												SURFACE ELEVATION: 183.5 ft COORD. DA	TUN	Л: V	'A So	uth
			F	ELI	D D	ATA	\					Date(s) Drilled: 11/29/2021 - 11/29/2021	L	.AB	DAT	Ά
DEPTH (#)	ELEVATION (ft)	GOVERN	PENETRATION TEST 60 HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	STRATA G	STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
2 4 6 8 10 12 14 16 18 10 10 10 10 10 10 10 10 10 10 10 10 10	175 175 176 176	3	7 6 3 3 4 4 4 4 4 2 3 3 4 4 4 4 4 4 4 4 4 4	67 67 67 67 67 67 67 67 67 67 67 67 67 6		2 3.5 5 6 7.5 8.5 10 11 12.5 13.5 16 17.5 18.5 20						15" Asphalt ASPH 1.3 / 182.2 9" Subbase material, Gray, medium to coarse, SAND AND GRAVEL, dry CRA 2.0 / 181.5 Fill, Tan-light brown, fine to medium, POORLY GRADED SAND WITH SILT, trace Gravel, medium dense, moist SP-SM 7.0 / 176.5 Fill, Gray, fine to medium, CLAYEY, SILTY SAND, seam of clay at 7ft to 7.3ft, trace Gravel, trace to some woods, loose, moist SC 16.0 / 167.5 Residual, Brown-light gray, fine to medium, POORLY GRADED SAND WITH SILT, clay seam, very loose, moist SP-SM 19.0 / 164.5 Residual, Gray, black, lithified, SILT derived from decomposition of parent rock, trace rock fragments, medium stiff, moist ML 20.0 / 163.5 Boring terminated at 20ft.	46	21	17.4 15.4 22.2 16.6 14.5 16.9 25.9	27.0 35.0

REMARKS: Rig Type: Acker XLS.
Cave-in at 15.7'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

PAGE 1 OF 1

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-6

PAGE 1 OF 1

OFFSET: 2 LT STATION: 21+00

NORTHING: 354697.7435 ft SURFACE ELEVATION: 184.9 ft Easting: 3626407.9003 ft COORD. DATUM: VA South

				SURFACE ELEVATION: 184.9 ft COORD. DATUM	: VA	ι Soι	uth
FIELD [ATA			Date(s) Drilled: 11/15/2021 - 11/15/2021 Drilling Method(s): HSA	LA	B DA	AT/
DEPTH (ft) ELEVATION (ft) STANDARD PENETRATION TEST HAMMER BLOWS T SOIL RECOVERY (%) SAMPLE LEGEND	SAMPLE INTERVAL CORE RECOVERY (%) ROCK QUALITY DESIGNATION O	DIP °	STRATALEGEND	SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA 0.0 / 184.9	F LIQUID LIMIT	□ PLASTICITY INDEX	
2	1.5 3 3.5 5 6 7.5 8.5 10 11 12.5 13.5 15 16 17.5 18.5 20			19" Asphalt ASPH 1.58 / 183.32 17" Subbase material, Light gray, medium to coarse, SILTY SAND AND GRAVEL, medium dense, moist CRA 3.0 / 181.9 Possible fill, Light brown, medium to coarse, SILTY SAND WITH SOME FINE GRAVEL, layer of elastic SILT binder from 6' to 6.5', medium dense, moist SM 7.0 / 177.9 Residual, Light brown, light gray, medium to coarse, POORLY GRADED SAND WITH SILT, trace Gravel, medium dense, moist SP 20.0 / 164.9 Boring terminated at 20ft			2 2 3 3 1 1 1 1 1 1 1 1 1 1 1
REMARKS: Rig Type: Acker Cave-in at 13.9'. Hole backfille	XLS. d with soil cuttir	ng and p	oatch	ed with cold asphalt at the surface.		10	

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-7

PAGE 1 OF 1

STATION: 19+99 OFFSET: 33 RT

Easting: 3626417.4743 ft NORTHING: 354591.7507 ft

TUN		'A So	uth
L	_AB	DAT	Ά
	Ä	%) J	FINES CONTENT #200 (%)
MIT	물	ĘN.	#20
ID L	<u>F</u>	NO	Z
IQU	STIC	Œ C	Ä
_	PLA	ĮŢ.	0
		1018	ЦN
LL	PI	2	<u> </u>
		7.8	
		29.0	
		14.8	20
		20.0	
		05.0	
		35.3	
		15.5	
	1		
P	ΔGI	Ξ 1 C)F
	LIQUID LIMIT	LIQUID LIMIT PLASTICITY INDEX	LAB DAT

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

B-A3-8

PAGE 1 OF 1

PAGE 1 OF 1 **B-A3-8**

STATION: 19+00 OFFSET: 4 LT

NORTHING: 354503.8875 ft Easting: 3626358.4498 ft COORD. DATUM: VA South

FIELD DATA SOIL SOIL SOIL SOUR SAMPLE LEGEND	T LIQUID LIMIT	D PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
SPT Method: Automatic Hammer Other Test(s): Driller: SaLUN, Inc. Loge Recovery (%) Soll Recovery (%) S			MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
	-		-	
1.5			3.5 12.2 29.3 29.2	56.0

REMARKS: Rig Type: Acker XLS. Cave-in at 6.5'. Hole backfilled with soil cutting and patched with cold asphalt at the surface.

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: MSE WALL

D-A3-9

PAGE 1 OF 1

B-A3-9

STATION: 17+99 OFFSET: 29 RT

NORTHING: 354398.3209 ft Easting: 3626366.6296 ft COORD. DATUM: VA South

				•			•				SURFACE ELEVATION: 179.9 ft COORD. DA	TUN	√l: V	/A So	uth
		FI	ELC) D	ATA	١					Date(s) Drilled: 11/30/2021 - 11/30/2021	I	_AB	DAT	Ά
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)			STNIOL STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING	LIQUID LIMIT	PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
	MARKS	8 9 8 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	87 67 , 100	er>							FIELD DESCRIPTION OF STRATA 0.0 / 179.9 9" Asphalt ASPH 0.75 / 179.15 3" Concrete CONC 1.0 / 178.9 3" Asphalt ASPH 1.25 / 178.65 9" Subbase material, Gray, medium to coarse, SAND AND GRAVEL, dry CRA 2.0 / 177.9 Fill, Brown, fine to medium, POORLY GRADED SAND WITH SILT, Clayey Silt layer at 8.8'-9.5', medium dense, moist SP-SM 10.0 / 169.9 Boring terminated at 10ft.	<u>ц</u>	AGI	17.9 19.1 19.2 20.7	24.0 DF 1
Cav	/e-in at	6.8'. Hole b	ackfil	lled	with s	soil (cuttir	ng ar	nd pa	atche	ed with cold asphalt at the surface.			<u>- ι</u>	

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

STATION: 727+80 OFFSET: 17 RT

NORTHING: 355034.259 ft Easting: 3626573.5922 ft

		Virginia	i Depa	artm	nent (of T	rans	porta	ition		NORTHING: 355034.259 ft Easting: 3626573 SURFACE ELEVATION: 186.1 ft COORD. DATUM	.592 : VA	22 ft Sou	ıth
		FI	ELD	D/	AT	\					Date(s) Drilled: 12/1/2021 - 12/1/2021	LA	B DA	λTΑ
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS TI	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION		STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)
0.1.1.2.2.3.3.4.4.5.56.6.7.7.8 VALVES OF 17.0.7.3.0.1 1.0.0.2.0.0.1	184	14 8 6 14 4 4 4 6 6 7 8	45 85 75		2 4 6 8						0.0 / 186.1 14" Asphalt ASPH 1.2 / 184.9 10" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.0 / 184.1 Fill, Brown, hint of black, fine to medium, SILTY SAND, trace to none elastic fine, medium dense to loose to medium dense, moist SM 8.0 / 178.1 Boring terminated at 8ft.			25.2 16.3 16.9

REMARKS: Rig Type: Acker XLS.
Boring was offset 3' towards south due to undergroun utility. Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 4.8'

PAGE 1 OF 1

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 724+55 OFFSET: 17 LT

NORTHING: 354720.1225 ft Easting: 3626490.2662 ft

		v. s					, all raj			SURFACE ELEVATION: 183.0 ft COORD. DA				uth
		FII	ELD	D	ATA					Date(s) Drilled: 12/1/2021 - 12/1/2021	I	_AB	DAT	Α
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS T		SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	P STNIOL	STRATA LEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
-95 EXPRESS LANE- OPILZ BLVD BORINGS, GPU:SPT7/GDT:gINT_version 10.02.00.04:7/20/22:WRA 8 4 4 2 9 9 5 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 7 7 8 9 5 7 7 8 9 9 7 8 9 9 9 7 8 9 9 9 9	- 182 - 180 - 178 - 176	4 5 7 9 3 6 6 5 2 4 6 7	65		2 4 6 8					0.0 / 183.0 17" Asphalt ASPH 1.42 / 181.58 8" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.08 / 180.92 Fill, Brown, fine to medium, SILTY SAND, trace to some to none Gravel, medium dense to loose, moist SM 8.0 / 175.0 Boring terminated at 8ft.			15.6 14.8 15.8	27.0

REMARKS: Rig Type: Acker XLS.
Boring was offset 7' towards south due to undergroun utility. Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 5.0'

PAGE 1 OF 1 **B-A4-2**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

STATION: 721+55 OFFSET: 18 RT

NORTHING: 354430.0292 ft Easting: 3626413.789 ft

	Virginia	a Depa	ırtmen	t of 1	rans į	porta	tion		NORTHING: 354430.0292 ft Easting: 3626413 SURFACE ELEVATION: 180.2 ft COORD. DATUM	.789 : VA	tt Sou	uth
	FI	ELD	DAT	A					Date(s) Drilled: 12/1/2021 - 12/1/2021	LA	B DA	ATA
DEPTH (ft) ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS		SAMPLE LEGEND SAMPLE INTERVAL	CORE RECOVERY (%)			STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)
0.5.1 0.1.5.0 1.5.	5 5 6	50 85	2 4 6 8						0.0 / 180.2 17" Asphalt ASPH 1.42 / 178.78 8" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.08 / 178.12 Fill, Brown, fine to medium, SILTY SAND, trace Gravel, loose to medium dense to loose, moist SM 8.0 / 172.2 Boring terminated at 8ft.			17.8 16.8 16.1

REMARKS: Rig Type: Acker XLS.
Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 4.9'

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 718+64 OFFSET: 18 LT

NORTHING: 354157.6633 ft Easting: 3626304.2854 ft

		Virgini	a Del	oainu	meni	OY II	ransp	ONE	non		SURFACE ELEVATION: 179.0 ft COORD. DA				
		FI	ELD	D	ATA	\					Date(s) Drilled: 11/30/2021 - 11/30/2021	L	AB	DAT	Α
47 114 01	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION		STNIOL STNIOL	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
-95 EXPRESS LANE. OPITZ BLVD BORINGS.GPJ:SPT7.GDT:gINT_version 10.02.00.04:1/20/22:WRA 9.95 EXPRESS LANE. OPITZ BLVD BORINGS.GPJ:SPT7.GDT:gINT_version 10.02.00.04:1/20/22:WRA	50+ 178 50- 176 50- 176 50- 176 50- 174	18 12 5 3 3 4	75		2 4 6						1.25 / 177.75 9" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.0 / 177.0 Fill, Tan, fine to medium, POORLY GRADED SAND WITH SILT, medium dense to loose, moist SP-SM 6.0 / 173.0 Boring terminated at 6ft.			12.9	32.0

REMARKS: Rig Type: Acker XLS.
Boring was offset 4' towards west due to underground utility. Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 3.2'

PAGE 1 OF 1 **B-A4-4**

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

STATION: 686+81 NORTHING: 351117.2654 ft

OFFSET: 18 LT Easting: 3625366.614 ft

		Virginia	a Dep	artr	ment ·	of T	ransp	orta	ition		NORTHING: 351117.2654 ft Easting: 3625366 SURFACE ELEVATION: 172.1 ft COORD. DATUM	.614 : VA	ft Sou	uth
		FI	ELD	D	ATA	\					Date(s) Drilled: 12/2/2021 - 12/2/2021	LA	B DA	λΤΑ
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS		SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION O		SINIOC	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)
EXPRESS LANE- OF IZ BLVD BORINGS GPUSP I 7 GD 1:gin version 10.02.00.04:7720/22:WRA	170	3 7 6 8 4 6 6 7 3 3 3 3	65 90		2 4 6 8						1.33 / 170.77 9" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.08 / 170.02 Fill, Brown-tan, fine to medium, SILTY SAND, trace elastic fine, medium dense to loose, moist SM 8.0 / 164.1 Boring terminated at 8ft.			15.6 17.4 13.0

REMARKS: Rig Type: Acker XLS.
Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 4.7'

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 682+81 OFFSET: 18 RT

NORTHING: 350741.8477 ft Easting: 3625229.2087 ft

		3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							SURFACE ELEVATION: 168.3 ft COORD. DA				uth
		F	IELI	ם כ	ATA	١					Date(s) Drilled: 12/2/2021 - 12/2/2021	ı	LAB	DAT	Ά
		801					RO	C K	P°		Drilling Method(s): HSA SPT Method: Automatic Hammer		X	(%)	(%)
DEPTH (#)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	STRATA	STNIOL	STRATA LEGEND	Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	н поир ымт	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT -#200 (%)
1-99 EXPRESS LANE- OPITZ BLVD BORINGS, GPJ: SPT7, GDT: gINT_version 10.02.00.04:1/20/22:WRA	168 01 166 02 164 03 162	2 3 3	65 7 35 5 90 4		2 4 6 8						1.25 / 167.05 10" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.08 / 166.22 Fill, Brown-tan, fine to medium, SILTY SAND, layer of mottled Clay from 2.5'-3.0', loose, moist SM 8.0 / 160.3 Boring terminated at 8ft.			24.2 15.6 15.9	55.0

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 672+06 OFFSET: 18 LT

NORTHING: 349743.9644 ft Easting: 3624827.123 ft

SOIL SOIL SO SOIL SO SOIL SOIL	Virginia Depa	riment of Irans	sponation	SURFACE ELEVATION: 149.8 ft COORD. DATU			uth
SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING 150 148 7 18 15 18 65 0 4 4 6 1 75 0 6 6 4 3 75 0 6 6 6 7 75 0 6 8 0 1447.72 FIELD DESCRIPTION OF STRATA 0.0 / 148 8 0.0 / 148	FIELD	DATA		Date(s) Drilled: 12/2/2021 - 12/2/2021	LA	B D	AT/
7 18 15 165 148 7 18 15 15 15 15 15 15 15 15 15 15 15 15 15			DIP °	SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING			
noie backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 4.7	18 15 65 4 13 65 65 65 65 65 65 65 65 144 75 66 65 66 65 66 66 66 66 66 66 66 66 66	6 8		1.25 / 148.55 10" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 2.08 / 147.72 Fill, Brown/gray, fine to medium, CLAYEY, SILTY SAND, medium dense to loose, moist SC-SM 6.0 / 143.8 Brown, fine to medium, POORLY GRADED SAND, trace Silt, medium dense, moist SP 8.0 / 141.8 Boring terminated at 8ft.			11 14
B-∆4-7	Hole backfilled with soil cuttin	g and patched	d with cold asp	mail at the surface. Cave-in at 4.7			

B-A4-7

LOCATION: I-95 Express way/Opitz Blvd.

STRUCTURE: PAVEMENT

PAGE 1 OF 1

OFFSET: 18 LT STATION: 668+56

NORTHING: 349415.1818 ft Easting: 3624707.6334 ft

		v. s								SURFACE ELEVATION: 140.3 ft COORD. DA				uth
		FII	ELD	D	ATA	\				Date(s) Drilled: 12/2/2021 - 12/2/2021	ı	LAB	DAT	Ά
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS T		SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)		P SINIOC	STRATA LEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	F LIQUID LIMIT	□ PLASTICITY INDEX	MOISTURE CONTENT (%)	FINES CONTENT #200 (%)
95 EXPRESS LANE: OPTIZ BLVD BORINGS, GPJ:SPT7, GDT:gNT_version 10.02,00.04;7/20/22;WRA 8 2 2 9 9 5 5 7 7 7 5 5 7 7 7 7 7 7 7 7 7 7 7	138	7 18 15 13 8 6 4 3 1 2 3 5	75 60		2 4 6 8				00000	0.0 / 140.3 15" Asphalt ASPH 1.25 / 139.05 33" Subbase materila Gray, medium to coarse SAND AND GRAVEL, dry CCA 4.0 / 136.3 Fill, Dark gray-brown, fine to medium, CLAYEY, SILTY SAND, loose, moist SM 8.0 / 132.3 Boring terminated at 8ft.			16.2 21.0 12.4	59.0

REMARKS: Rig Type: Acker XLS.
Hole backfilled with soil cutting and patched with cold asphalt at the surface. Cave-in at 4.5'

PAGE 1 OF 1

B-A4-8

I-95 Express way/Opitz Blvd LOCATION:

STRUCTURE: PAVEMENT

B-PE-1

PAGE 1 OF 1

STATION: 70+75 OFFSET: 50 RT

		FI	ELC	D	ATA	١				Date(s) Drilled: 11/9/2021 - 11/9/2021	LA	B D/	۸T
DEPIH (π)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS		SAMPLE LEGEND	SAMPLE INTERVAL	(%	ROCK QUALITY DESIGNATION	DII	STRATALEGEND	Drilling Method(s): HSA SPT Method: Automatic Hammer Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta GROUND WATER NOT ENCOUNTERED DURING DRILLING	LIQUID LIMIT	PLASTICITY INDEX	
.2		<u> </u>	ν (\	<u>/</u>	ŏ			(alele)	FIELD DESCRIPTION OF STRATA	LL	PI	-
APD #DD #DD/	209 4 207 4	3 3 3	75		1.25					4.5" Asphalt ASPH 0.38 / 209.42 10.5" Subbase material, Light gray, medium to coarse, SAND AND GRAVEL, trace Silt, dry CRA 1.25 / 208.55 Fill, Light brown, fine to medium, SILTY SAND, some Gravel, some elastic fine, loose, moist. SM 3.25 / 206.55 Boring trerminated at 3.25ft			
	1		1			1	1	ı l	l l		1	1	l l

PAGE 1 OF 1 B-PE-1

LOCATION: I-95 Express way/Opitz Blvd

STRUCTURE: PAVEMENT

PAGE 1 OF 1

STATION: 71+25 OFFSET: 52 RT

NORTHING: 355218.8102 ft Easting: 3626963.7834 ft

		Viigiiii									SURFACE ELEVATION: 208.1 ft COORD. DATUM: Date(s) Drilled: 11/9/2021 - 11/9/2021	VA		
- 1				<i>,</i> D	ATA		D •	•	,		Drilling Method(s): HSA		<i>ע</i> ט	~1 /
		SOII	_				RO			1	SPT Method: Automatic Hammer		×	2
DEP Ι Η (π)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION		STNIOL STNIOL	STRATA LEGEND	Other Test(s): Driller: SaLUT, Inc. Logger: J. Yadeta	LIQUID LIMIT	PLASTICITY INDEX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ם	ELE	STA PENETR HAMMI	SOIL RE	SAMF	SAMP	CORE RE	ROCK	STR	lor	STR	GROUND WATER NOT ENCOUNTERED DURING DRILLING FIELD DESCRIPTION OF STRATA	LLL	DLA:	TOION
Nacity Coult Coult	207 · 206 ·	4 5		V	1.3					00 00 1				
	205	4	4 60	Å	3.3					% (11" Subbase material, Light gray, medium to coarse, SAND AND GRAVEL, trace Silt, dry CCA			
											Fill, Light gray, fine to medium, SILTY SAND, some Gravel, loose, moist. (Possible Subbase) SM 2.0 / 206.1			
											Fill, Tan, fine to coarse, SAND WITH GRAVEL, loose, damp. SP/GP 3.2 / 204.9			
											Boring trerminated at 3.2ft			
EM	IAPKS	: Rig Type	· Ack	er \	<i>(</i> 1 S						DA	C F	1 0	

APPENDIX C.3

DCP Logs

LOCATION: STRUCTURE:

Prince William County, VA

DCP-NE Mid PAGE 1 OF 1

OFFSET: STATION:

NORTHING: 6917016 ft Easting: 11828718.8 ft

											SURFACE ELEVATION: 192.0 ft COORD. DATUI	M: V	A No	orth
		F	FIEL	D [DAT/	\					Date(s) Drilled: 11/29/2021 - 11/29/2021	LA	B DA	ATA
		SOI	L				RΟ	СК			Drilling Method(s): Hand Auger SPT Method:			(%)
DЕРТН (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	STRATA	STNIOL	STRATA LEGEND	Other Test(s): Hand-Held DCP Driller: WRA Logger: Burtis / Burroughs GROUND WATER NOT ENCOUNTERED DURING DRILLING NO LONG TERM MEASUREMENTS TAKEN	LIQUID LIMIT	PLASTICITY INDEX	MOISTURE CONTENT (%)
		3	+	1::							FIELD DESCRIPTION OF STRATA 0.0 / 192.0	LL	PI	
0.5		4 5	5		0.5						FILL, Brown, orange-brown, fine-grained SILTY SAND with fine, rounded quartz gravel, contains roots, dry to moist (SM) SM			
1.5	400	5	4		1.5									
2.0+	190 -	5 6 6	5		2.5						2.0 / 190.0 FILL, Orange-brown, fine- to medium-grained CLAYEY SAND with coarse, quartz gravel, moist (SC) SC			
3.0 3.5			6	<u> </u>	3									
4.0 4.5	188	7 6	6		4.5						4.0 / 188.0 FILL, Orange-brown, fine- to medium-grained SILTY SAND with rounded quartz gravel, clay, dry to moist (SM) SM			
5.0 5.5		5 5	7		5.5									
6.0 6.5	186	6 9 7 6	7		6.5									
7.0		,	7		7						Boring terminated at 7 ft.			

REMARKS: DCP test conducted at 1-ft. intervals. Recorded blows are blows per 2-inches; Boring location and elevation estimated using Google Earth

4	1										LOCATION. I TITLE WITH COUNTY, VA	CF		
		Virgini	a De	part	ment	of T	ransp	orta	tion		STRUCTURE: PA STATION: OFFSET: NORTHING: 6916895.8 ft Easting: 118287 SURFACE ELEVATION: 207.0 ft COORD. DATUM	17.5 M: V	ft	
		FI	IEL	D D	ATA	<u>, </u>					Date(s) Drilled: 11/29/2021 - 11/29/2021		B DA	
		SOII					RO				Drilling Method(s): Hand Auger SPT Method:			(%)
DEPTH (ft)	ELEVATION (ft)	STANDARD PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION		STNIOL STNIOL	STRATA LEGEND	Other Test(s): Hand-Held DCP Driller: WRA Logger: Burtis / Burroughs GROUND WATER	LIQUID LIMIT	PLASTICITY INDEX	MOISTURE CONTENT (%)
		ST	OIL RI	SAN	SAM)RE R	ROC	ST	9	STF	NOT ENCOUNTERED DURING DRILLING NO LONG TERM MEASUREMENTS TAKEN		곱	JISTL
		<u> </u>	Š		<u>/</u>	8					FIELD DESCRIPTION OF STRATA	LL	PI	×
		0									0.0 / 207.0 1-inch Topsoil TOPS	7		
0.5	206	1	1		0.5						0.1 / 206.9 FILL, Orange-brown, CLAYEY SAND, contains rock fragments, moist to wet (SC) SC			
1.5		1	1		1.5									
2.0	-	1 1			2									
2.5			1	<u>:4:1</u>	2.5									
3.0	204	1 1 1			3						3.0 / 204.0 FILL, Light brown and gray, fine- to medium-grained CLAYEY	1		
3.5		,	1	:::	3.5						SAND, contains trace organic material, moist (SC) SC			
4.0	-	1 1	1		4.5									
5.0	202	1		-	5									
5.5		1 2	2		5.5									
6.0	_	2 3			6									
6.5		2 2	2		6.5									
7.0	200		2		7						Boring terminated at 7 ft.	_		
REI Bor	MARKS	: DCP tes	t co	ndu	cted a	at 1-	ft. in	terva	als. Goo	Rec		\GE		
	-							-		-		CF	'-S	E

LOCATION: Prince William County, VA

STRUCTURE:

PAGE 1 OF 1

OFFSET: STATION:

NORTHING: 6917039.1 ft SURFACE ELEVATION: 211.0 ft Easting: 11828255.7 ft COORD. DATUM: VA North

												SURFACE ELEVATION: 211.0 ft COORD. DATUM	1. V <i>F</i>	4 INO	ntn
FIELD DATA						١					Date(s) Drilled: 11/29/2021 - 11/29/2021	LA	B D/	AΤΑ	
			SOIL		9	'AL	(%	RO	C K	P°		Drilling Method(s): Hand Auger SPT Method: Other Test(s): Hand-Held DCP	Ŀ	DEX	(%) TZ
DEPTH (ft)	ELEVATION (ft)	NDARD	PENETRATION TEST HAMMER BLOWS	SOIL RECOVERY (%)	SAMPLE LEGEND	SAMPLE INTERVAL	CORE RECOVERY (%)	ROCK QUALITY DESIGNATION	4TA	ITS	STRATA LEGEND	Driller: WRA Logger: Burtis / Burroughs	LIQUID LIMIT	PLASTICITY INDEX	MOISTURE CONTENT (%)
Ĭ	ELE	STAI	PENETRA HAMME	SOIL REC	SAMP	SAMPI	CORE RE	ROCK	STRATA	STNIOL	STRA	GROUND WATER NOT ENCOUNTERED DURING DRILLING NO LONG TERM MEASUREMENTS TAKEN			MOISTUR
		1				/					200	FIELD DESCRIPTION OF STRATA 0.0 / 211.0	LL	PI	
0.5			3	3		0.5						4-inch Topsoil TOPS 0.3 / 210.7			
1.0	210	3				1						FILL, Orange-brown, fine- to medium-grained SANDY CLAY, moist to wet (SC) SC 1.0 / 210.0			
1.5			4	ļ		1.5						FILL, Orange-brown, fine- to medium-grained SILTY SAND, contains rock fragments, rounded gravel, trace clay, moist (SM) SM			
2.0-		2	2			2									
2.5			3	3	:::	2.5									
3.0-	208	2	5			3						3.0 / 208.0 FILL, Light brown, fine- to medium-grained SILTY SAND,			
3.5			4	l 	:23	3.5						contains organic material, moist (SM) SM			
4.0															
4.5		3	3			4.5						4.5 / 206.5 FILL, Brown to orange-brown, fine- to medium-grained SILTY			
5.0	206	-	3	3	<u>::::</u>	5						SAND, contains lenses to pockets of silty clay, organic material (SM) SM			
5.5		3	3			5.5									
6.0			2	2	1414	6									
6.5		3	2			6.5									
7.0	204		2	2	<u>:-:</u> -	7						Boring terminated at 7 ft.			
·6.0·															

REMARKS: DCP test conducted at 1-ft. intervals. Recorded blows are blows per 2-inches; Boring location and elevation estimated using Google Earth

APPENDIX C.4

Pavement Core Records

Proposed Pavement Core Location

Material Description	Deptl	h (in.)	Thickness (in)	Total Thickness	Condition	
iviaterial description	From	To	Thickness (in.)	(in.)	Condition	
Asphalt -Surface Mix	0.0	2.5	2.5			
Asphalt-Intermediate Mix	2.5	7.0	4.5	14.0		
Asphalt-Base Mix	7.0	14.0	7.0			
Concrete	-	-	-			
Aggregate Base	14.0	24.0	10.0	10.0		

Additional Notes:

Delineation between intermediate and base mix layers are approximate.

Pavement Core Sample

<u>Proposed Pavement Core Location</u>

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition
Material Description	From	То		(in.)	Condition
Asphalt -Surface Mix	0.0	2.5	2.5		
Asphalt-Intermediate Mix	2.5	7.0	4.5	17.0	
Asphalt-Base Mix	7.0	17.0	10.0		
Concrete	-	-	-		
Aggregate Base	17.0	25.0	8.0	8.0	

Additional Notes:

Delineation between intermediate and base mix layers are approximate.

Pavement Core Sample

Proposed Pavement Core Location

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition
Material Description	From	То		(in.)	Condition
Asphalt -Surface Mix	0.0	3.0	3.0		
Asphalt-Intermediate Mix	3.0	8.0	5.0	17.0	
Asphalt-Base Mix	8.0	17.0	9.0		
Concrete	-	-	-		
Aggregate Base	17.0	25.0	8.0	8.0	

Additional Notes:

Pavement Core Sample

Proposed Pavement Core Location

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thiskness (in)	Total Thickness	Condition
Material Description	From	From To Thickness (in.)	(in.)	COHARLION	
Asphalt -Surface Mix	0.0	3.0	3.0		
Asphalt-Intermediate Mix	3.0	7.0	4.0	15.0	
Asphalt-Base Mix	7.0	15.0	8.0		
Concrete	-	-	-		
Aggregate Base	15.0	24.0	9.0	9.0	

Additional Notes:

1.5" Pavement overlay

Pavement Core Sample

Proposed Pavement Core Location

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thiskness (in)	Total Thickness	Condition
Material Description	From	From To Thickness (in.)		(in.)	Condition
Asphalt -Surface Mix	0.0	2.5	2.5		
Asphalt-Intermediate Mix	2.5	8.0	5.5	16.0	
Asphalt-Base Mix	8.0	16.0	8.0		
Concrete	-	-	-		
Aggregate Base	16.0	25.0	9.0	9.0	

Additional Notes:

Pavement Core Sample

Proposed Pavement Core Location

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in)	Total Thickness	Condition
Material Description	From	То	Thickness (in.)	(in.)	Condition
Asphalt -Surface Mix	0.0	2.5	2.5		
Asphalt-Intermediate Mix	2.5	7.0	4.5	15.0	
Asphalt-Base Mix	7.0	15.0	8.0		
Concrete	-	-	-		
Aggregate Base	15.0	25.0	10.0	10.0	

Additional Notes:

Thicknesses based on picture.

Delineation between intermediate and base mix layers are approximate.

Pavement Core Sample

Proposed Pavement Core Location

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in)	Total Thickness	Condition
Material Description	From	То	Thickness (in.)	(in.)	Condition
Asphalt -Surface Mix	0.0	2.5	2.5		
Asphalt-Intermediate Mix	2.5	7.0	4.5	16.0	
Asphalt-Base Mix	7.0	16.0	9.0		
Concrete	-	-	-		
Aggregate Base	16.0	25.0	9.0	9.0	

Additional Notes:

Pavement Core Sample

<u>Proposed Pavement Core Location</u>

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition	
iviateriai bescription	From	То	THICKHESS (III.)	(in.)	Condition	
Asphalt -Surface Mix	0.0	2.5	2.5			
Asphalt-Intermediate & Base Mix	2.5	15.0	12.5	15.0		
Concrete	-	-	-			
Aggregate Base	15.0	48.0	33.0	33.0		

Additional Notes:

Unable to differentiate between intermediate and base asphalt layers.

Proposed and as drilled pavement core location

Material Description	Depth (in.)		Thickness (in.)	Total Thickness	Condition
iviaterial description	From	То	THICKINESS (III.)	(in.)	Condition
Asphalt -Surface Mix	0.0	1.5	1.5		
Asphalt-Intermediate Mix	1.5	5.5	4.0	12.0	
Asphalt-Base Mix	5.5	12.0	6.5		
Concrete	-	-	-		
Aggregate Base	12.0	16.0	4.0	4.0	

Additional Notes:

Pavement Core Sample

Proposed and as drilled pavement core location

Material Description	Dept	h (in.)	Thickness (in)	Total	Condition
iviaterial description	From	om To Thickness (in.) Thickness (in.)	Condition		
Asphalt -Surface Mix	0.0	1.5	1.5		
Asphalt-Intermediate & Base	1.5	11.0	0.5	11.0	
Mix	1.5	11.0	7.5		
Concrete	-	-	-		
Aggregate Base	11.0	18.0	7.0	7.0	

Additional Notes:

Unable to differentiate between intermediate and base asphalt layers.

B-PE-1

3	
THE STATE OF THE S	
And Hand Manda Man	
THE PROPERTY OF THE PARTY OF TH	
Anta Bata	
A THE THE PERSON	
O O O O O O O O O O O O O O O O O O O	

	THE PARTY OF THE PARTY AND THE PARTY OF THE	
THE RESERVE TO SERVE THE RESERVE THE RESERVE TO SERVE THE RESERVE THE RE		
2		A
Park		
	CATTER TO THE PERSON NAMED IN	
11/10/2004		
		THE STATE OF THE S
		Contract Contract Contract
		RANGE OF THE PARTY
		A STATE OF THE STA
	No. of the last	
	The students of the	
	Cramera and an area	
	TT CONTRACTOR	

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition
iviaterial description	From	То	THICKITESS (III.)	(in.)	Condition
Asphalt -Surface Mix	0.0	1.5	1.5		
Asphalt-Intermediate Base Mix	1.5	4.5	3.0	4.5	
	1.5	4.5	3.0		
Concrete	-	-	-		
Aggregate Base	4.5	15.0	10.5	10.5	
Additional Notes:	•		•		

As drilled Pavement Core Location

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition		
Material Description	From	То	THICKHESS (III.)	(in.)	Condition		
Asphalt -Surface Mix	0.0	1.5	1.5				
Asphalt-Intermediate Mix	1.5	3.0	1.5	3.0			
Asphalt-intermediate wix	1.5	3.0	1.5				
Concrete	-	1	-				
Aggregate Base	3.0	14.0	11.0	11.0	_		

Additional Notes:

B-A1-1

Proposed and as drilled pavement core location

Material Description	Dept	h (in.)	Thickness (in)	Total Thickness	Condition
iviaterial Description	From	То	Thickness (in.)	(in.)	Condition
Asphalt -Surface Mix	0.0	1.5	1.5		
Asphalt-Intermediate & Base Mix	1.5	12.0	10.5	12.0	
	-	-	-		
Concrete	1	1	-		
Aggregare Base	12.0	16.0	4.0	4.0	

Additional Notes:

Proposed and as drilled pavement core location

Material Description	Dept	h (in.)	Thickness (in.)	Total Thickness	Condition
Material Description	From	То	THICKHESS (III.)	(in.)	Condition
Asphalt -Surface Mix	0.0	1.5	1.5		
Asphalt-Intermediate & Base Mix	1.5	11.0	9.5	11.0	
	ı	1	-		
Concrete	1	1	-		
Aggregare Base	11.0	18.0	7.0	7.0	

Additional Notes:

APPENDIX D

Laboratory Test Results

Sheet 1 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A1-1	S1	1.5 - 3.0								8.3
B-A1-1	S2	3.5 - 5.0								35.2
B-A1-1	S3	6.0 - 7.5	68	27	41	100	76	СН	A-7-6	30.0
B-A1-1	S4	8.5 - 10.0								24.1
B-A1-1	S5	11.0 - 12.5								21.3
B-A1-1	S6	13.5 - 15.0								13.8
B-A1-2	S1	1.5 - 3.0								21.7
B-A1-2	S2	3.5 - 5.0								33.7
B-A1-2	S3	6.0 - 7.5								21.4
B-A1-2	S4	8.5 - 10.0								29.8
B-A1-2	S5	11.0 - 12.5				100	76			26.6
B-A1-2	S6	13.5 - 15.0								16.4
B-A1-2	S7	16.0 - 17.5								14.8
B-A1-2	S8	18.5 - 20.0								13.0
B-A1-3	S1	0.0 - 1.5								18.7
B-A1-3	S2	1.5 - 3.0								15.2
B-A1-3	S3	5.0 - 6.5				99	25			13.9
B-A1-3	S4	7.5 - 9.0								17.5
B-A1-3	S5	10.0 - 11.5								16.0
B-A1-3	S6	12.5 - 14.0								17.8
B-A1-3	S7	15.0 - 16.5								19.6
B-A1-3	S8	17.5 - 19.0								11.5
B-A1-3	S9	23.5 - 25.0								11.7
B-A1-3	S10	28.5 - 30.0								9.1
B-A1-4	S1	1.0 - 2.5								19.9
B-A1-4	S2	3.5 - 5.0								20.8
B-A1-4	S3	6.0 - 7.5								13.6

Summary of Laboratory Results Opitz Blvd

Woodbridge, VA

Sheet 2 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A1-4	S4	8.5 - 10.0								18.6
B-A1-4	S5	11.0 - 12.5								16.6
B-A1-4	S6	13.5 - 15.0								15.6
B-A1-4	S7	16.0 - 17.5								15.7
B-A1-4	S8	18.5 - 20.0								24.4
B-A1-4	S9	21.0 - 21.3								11.1
B-A1-4	S10	23.5 - 23.9								11.1
B-A1-4	S11	28.5 - 28.8								13.5
B-A1-6	S1	0.5 - 2.0								6.6
B-A1-6	S2	3.5 - 5.0								19.3
B-A1-6	S3	6.0 - 7.5								18.9
B-A1-6	S4	8.5 - 10.0								13.3
B-A1-6	S5	11.0 - 12.5								18.7
B-A1-6	S6	13.5 - 15.0	35	24	11	100	23	SC	A-2-6	15.6
B-A1-6	S7	16.0 - 17.5								15.8
B-A1-6	S8	18.5 - 20.0								15.6
B-A1-6	S9	23.5 - 25.0								16.1
B-A1-6	S10	28.5 - 30.0								26.6
B-A1-6	S11	33.5 - 35.0								16.5
B-A1-6	S12	38.5 - 40.0								18.3
B-A1-6	S13	43.5 - 45.0	35	24	11	100	98	CL	A-6	19.2
B-A1-6	S14	48.5 - 50.0								17.2
B-A1-6	S15	53.5 - 55.0								12.1
B-A1-6	S16	58.5 - 60.0								11.9
B-A1-6	S17	63.5 - 65.0								14.9
B-A1-6	S18	68.5 - 70.0								19.7
B-A1-6	S19	73.5 - 75.0								16.2

Summary of Laboratory Results Opitz Blvd

Woodbridge, VA

Sheet 3 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A2-1	S1	1.5 - 3.0								10.1
B-A2-1	S2	3.5 - 5.0								18.1
B-A2-1	S3	6.0 - 7.5								14.4
B-A2-1	S4	8.5 - 10.0				99	22			12.7
B-A2-1	S5	11.0 - 12.5								10.8
B-A2-1	S6	13.5 - 15.0								14.3
B-A2-1	S7	16.0 - 17.5								16.2
B-A2-1	S8	18.5 - 20.0								20.7
B-A2-1	S9	23.5 - 25.0					_			23.1
B-A2-1	S10	28.5 - 30.0				94	46			10.1
B-A2-1	S11	33.5 - 35.0								10.0
B-A2-1	S12	38.5 - 40.0								10.0
B-A2-1	S13	43.5 - 45.0								12.5
B-A2-1	S14	48.5 - 50.0					_			12.4
B-A2-1	S15	53.5 - 55.0								9.8
B-A2-1	S16	58.5 - 60.0								14.8
B-A3-1	S1	1.5 - 3.0								6.1
B-A3-1	S2	3.5 - 5.0								15.7
B-A3-1	S3	6.0 - 7.5								13.9
B-A3-1	S4	8.5 - 10.0								13.6
B-A3-1	S5	11.0 - 12.5								14.3
B-A3-1	S6	13.5 - 15.0								13.3
B-A3-1	S7	16.0 - 17.5								18.7
B-A3-1	S8	18.5 - 20.0								16.8
B-A3-1	S9	23.5 - 25.0								29.7
B-A3-1	S10	28.5 - 30.0								11.8
B-A3-1	S11	33.5 - 35.0								17.4

Summary of Laboratory Results
Opitz Blvd

Woodbridge, VA

Sheet 4 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A3-1	S12	38.5 - 40.0								18.1
B-A3-2	S1	1.5 - 3.0								4.3
B-A3-2	S2	3.5 - 5.0								40.8
B-A3-2	S3	6.0 - 7.5								42.4
B-A3-2	S4	8.5 - 10.0								14.3
B-A3-2	S5	11.0 - 12.5				98	21			14.5
B-A3-2	S6	13.5 - 15.0								13.9
B-A3-2	S7	16.0 - 17.5								15.3
B-A3-2	S8	18.5 - 20.0								14.7
B-A3-2	S9	23.5 - 25.0								20.4
B-A3-2	S10	28.5 - 30.0								15.6
B-A3-2	S11	33.5 - 35.0								15.2
B-A3-2	S12	38.5 - 40.0								8.6
B-A3-3	S1	2.0 - 3.5								16.1
B-A3-3	S2	3.5 - 5.0								18.0
B-A3-3	S3	6.0 - 7.5								13.5
B-A3-3	S4	8.5 - 10.0	41	25	16	100	89	CL	A-7-6	22.4
B-A3-3	S5	11.0 - 12.5								12.7
B-A3-3	S6	13.5 - 15.0								16.8
B-A3-3	S7	16.0 - 17.5								17.6
B-A3-3	S8	18.5 - 20.0								24.8
B-A3-3	S9	23.5 - 25.0								19.1
B-A3-3	S10	28.5 - 30.0								15.4
B-A3-4	S1	1.5 - 3.0								4.2
B-A3-4	S2	3.5 - 5.0								14.8
B-A3-4	S3	6.0 - 7.5								19.4
B-A3-4	S4	8.5 - 10.0								20.8

Summary of Laboratory Results Opitz Blvd

Woodbridge, VA

Sheet 5 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A3-4	S5	11.0 - 12.5	55	28	27	97	45	SC	A-7-6	19.7
B-A3-4	S6	13.5 - 14.0								20.9
B-A3-4	ST-1	14.0 - 16.0	30	21	9	99	46	SC	A-4	19.9
B-A3-4	S7	16.0 - 17.5								21.0
B-A3-4	S8	18.5 - 20.0								22.5
B-A3-4	S9	23.5 - 25.0								14.9
B-A3-4	S10	28.5 - 30.0					_			19.4
B-A3-5	S1	2.0 - 3.5								17.4
B-A3-5	S2	3.5 - 5.0				91	27			15.4
B-A3-5	S3	6.0 - 7.5								22.2
B-A3-5	S4	8.5 - 10.0	46	25	21	100	35	SC	A-2-7	16.6
B-A3-5	S5	11.0 - 12.5								14.5
B-A3-5	S6	13.5 - 15.0								16.9
B-A3-5	S7	16.0 - 17.5								17.8
B-A3-5	S8	18.5 - 20.0								25.9
B-A3-6	S1	1.5 - 3.0								4.1
B-A3-6	S2	3.5 - 5.0								22.4
B-A3-6	S3	6.0 - 7.5								31.6
B-A3-6	S4	8.5 - 10.0								16.0
B-A3-6	S5	11.0 - 12.5								15.1
B-A3-6	S6	13.5 - 15.0								17.1
B-A3-6	S7	16.0 - 17.5								14.8
B-A3-6	S8	18.5 - 20.0								17.2
B-A3-7	S1	2.0 - 3.5								7.8
B-A3-7	S2	3.5 - 5.0								29.0
B-A3-7	S3	6.0 - 7.5				100	20			14.8
B-A3-7	S4	8.5 - 10.0								20.0

Summary of Laboratory Results Opitz Blvd

Woodbridge, VA

Sheet 6 of 7

Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A3-7	S5	11.0 - 12.5								35.3
B-A3-7	S6	13.5 - 15.0								15.5
B-A3-8	S1	1.5 - 3.0								3.5
B-A3-8	S2	3.5 - 5.0								12.2
B-A3-8	S3	6.0 - 7.5				100	56			29.3
B-A3-8	S4	8.5 - 10.0								29.2
B-A3-9	S1	1.5 - 3.0								17.9
B-A3-9	S2	3.5 - 5.0				100	24			19.1
B-A3-9	S3	6.0 - 7.5					_			19.2
B-A3-9	S4	8.5 - 10.0								20.7
B-A4-1	S-1	2.0 - 4.0								25.2
B-A4-1	S-2	4.0 - 6.0								16.3
B-A4-1	S-3	6.0 - 8.0								16.9
B-A4-2	S-1	2.0 - 4.0				100	27			15.6
B-A4-2	S-2	4.0 - 6.0								14.8
B-A4-2	S-3	6.0 - 8.0								15.8
B-A4-3	S-1	2.0 - 4.0								17.8
B-A4-3	S-2	4.0 - 6.0								16.8
B-A4-3	S-3	6.0 - 8.0								16.1
B-A4-4	S-1	2.0 - 4.0				92	32			12.9
B-A4-4	S-2	4.0 - 6.0								15.4
B-A4-4	S-3	6.0 - 8.0								37.0
B-A4-5	S-1	2.0 - 4.0								15.6
B-A4-5	S-2	4.0 - 6.0								17.4
B-A4-5	S-3	6.0 - 8.0								13.0
B-A4-6	S-1	2.0 - 4.0				94	55			24.2
B-A4-6	S-2	4.0 - 6.0								15.6

Summary of Laboratory Results
Opitz Blvd

Woodbridge, VA

Sheet	7	٥f	7
Sneet	1	OI	- /

		1	1	•				1	I	
Boring	S No.	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	%<#4 Sieve	% < #200 Sieve	Classification	AASHTO	Water Content (%)
B-A4-6	S-3	6.0 - 8.0								15.9
B-A4-7	S-1	2.0 - 4.0								5.9
B-A4-7	S-2	4.0 - 6.0								18.3
B-A4-7	S-3	6.0 - 8.0								14.7
B-A4-8	S-1	2.0 - 4.0				100	59			16.2
B-A4-8	S-2	4.0 - 6.0								21.0
B-A4-8	S-3	6.0 - 8.0								12.4

Woodbridge, VA

GRAIN SIZE DISTRIBUTION

Opitz Blvd

Project Number: 21-0038

Sheet 1 of 4

GRAIN SIZE DISTRIBUTION

Project Number: 21-0038 Opitz Blvd

Sheet 2 of 4

GRAIN SIZE DISTRIBUTION

Project Number: 21-0038 Opitz Blvd

Sheet 3 of 4

Project Number: 21-0038

Sheet 4 of 4

Opitz Blvd

	Boring	Depth	LL	PL	PI	Fines	Classification	AASHTO
•	B-A1-1	6.0 - 7.5	68	27	41	76	FAT CLAY with SAND(CH)	A-7-6
×	B-A1-6	13.5 - 15.0	35	24	11	23	CLAYEY SAND(SC)	A-2-6
	B-A1-6	43.5 - 45.0	35	24	11	98	LEAN CLAY(CL)	A-6
*	B-A3-3	8.5 - 10.0	41	25	16	89	LEAN CLAY(CL)	A-7-6
•	B-A3-4	11.0 - 12.5	55	28	27	45	CLAYEY SAND(SC)	A-7-6
٥	B-A3-4	14.0 - 16.0	30	21	9	46	CLAYEY SAND(SC)	A-4
0	B-A3-5	8.5 - 10.0	46	25	21	35	CLAYEY SAND(SC)	A-2-7
12/2//2/								

Test Method: VTM-7 Tested By: <u>KZN, SM</u> Date: <u>12/21/2021</u>

ATTERBERG LIMITS' RESULTS

Project: Opitz Blvd

Location: Woodbridge, VA Project Number: 21-0038

Project Name: Opitz Blvd. Date:

12/20/2021 Project No.: 21-0038 Tested By: SM B-A1-6 Boring No.: Method: ASTM D4972

Sample No: **S6**

Depth: 13.5' - 15.0'

Calibration Data

	Buffer	Re-check		
	pH 4.0	pH 7.00	pH 10.0	pH 7.00
Reading	4.00	7.00	10.00	7.01
Temperature C	20.1	20.1	20.1	20.1

pH reading for Soil

	рН	T(°C)
Trial 1	5.33	20.3
Trial 2	5.26	20.3
Trial 3	5.33	20.3
Average	5.31	

Laboratory Testing - Resistivity of Soil

Project Name: Opitz Blvd. Date: 12/20/2021

Project No.: 21-0038 Tested By: SM

B-A1-6 Boring No.: Method: ASTM G57

Sample No: S6

Depth: 13.5' - 15.0'

Saturated condition In situ condition

Resistance reading $2.54~k\Omega$ $0.845~k\Omega$ Sample resisitivity 2540 Ω-cm 845 Ω-cm

Project Name: Opitz Blvd.

Project No.: 21-0038

Boring No.: B-A1-6 Sample No: S13

Depth: 43.5' - 45.0' Date: 12/20/2021

Tested By: SM

Method: ASTM D4972

Calibration Data

	Buffer	Re-check		
	pH 4.0	pH 7.00	pH 10.0	pH 7.00
Reading	4.00	7.00	10.00	7.01
Temperature C	20.1	20.1	20.1	20.1

pH reading for Soil

	рН	T(°C)
Trial 1	5.95	20.3
Trial 2	5.95	20.3
Trial 3	5.97	20.3
Average	5.96	

Laboratory Testing - Resistivity of Soil

Project Name: Opitz Blvd. Date: 12/20/2021

Project No.: 21-0038 Tested By: SM

B-A1-6 Boring No.: Method: ASTM G57

Sample No: S13

Depth: 43.5' - 45.0'

> Saturated condition In situ condition

Resistance reading $3.2\ k\Omega$ $1.4~k\Omega$ 1400 Ω-cm Sample resisitivity 3200 Ω-cm

Project Name: Opitz Blvd.

Project No.: 21-0038

B-A2-1 Boring No.: Sample No:

Depth: 8.5' - 10.0'

Calibration Data

	Buffer	Re-check		
	pH 4.0	pH 7.00	pH 10.0	pH 7.00
Reading	4.00	7.00	10.00	7.01
Temperature C	20.1	20.1	20.1	20.1

pH reading for Soil

	рН	T(°C)
Trial 1	4.30	20.3
Trial 2	4.26	20.3
Trial 3	4.34	20.3
Average	4.30	

Date:

Tested By:

Method:

12/20/2021

ASTM D4972

SM

Laboratory Testing - Resistivity of Soil

Project Name: Opitz Blvd. Date: 12/20/2021

Project No.: 21-0038 Tested By: SM

B-A2-1 Boring No.: Method: ASTM G57

Sample No: S4

Depth: 8.5' - 10.0'

Saturated condition In situ condition

Resistance reading $9.18~k\Omega$ $3.17~k\Omega$ 3170 Ω-cm Sample resisitivity 9180 Ω-cm

Project Name: Opitz Blvd. Date:

12/20/2021 Project No.: 21-0038 Tested By: SM

Sample No: S10

Depth: 28.5' - 30.0'

B-A2-1

Calibration Data

Boring No.:

	Buffer	Re-check		
	pH 4.0	pH 7.00	pH 10.0	pH 7.00
Reading	4.00	7.00	10.00	7.01
Temperature C	20.1	20.1	20.1	20.1

pH reading for Soil

	рН	T(°C)
Trial 1	5.04	20.3
Trial 2	5.09	20.3
Trial 3	5.10	20.3
Average	5.08	

Method:

ASTM D4972

Laboratory Testing - Resistivity of Soil

Project Name: Opitz Blvd. Date: 12/20/2021

Project No.: 21-0038 Tested By: SM

B-A2-1 Boring No.: Method: ASTM G57

Sample No: S10

Depth: 28.5' - 30.0'

> Saturated condition In situ condition

Resistance reading $28.7\ k\Omega$ $11.8~k\Omega$ 28700 Ω-cm 11800 Ω-cm Sample resisitivity

Final Voids [Log]

ASTM D2435

Preconsolidation Stress (tsf)	0.893			Cc	0.124	Cr 0.017
	BEFORE	AFTER	Liquid Limits	30	Test Dat	e 12/20/2021
Moisture (%)	19.9	20.7	Plastic Limits	21		
Dry Density (pcf)	100.5	106.7				
Saturation (%)	81.4	99.9				
Void Ratio	0.65	0.55	Specific Gravity	2.65	ASSUME	D

Sample Description	Clayey SAND (SC), contains roots & decay pieces of wood in tubes				
Project Number	21-0038 (WRA#4589	3-001) Depth (ft)	15.5	Remarks PP=2.2 tsf	
Sample Number	ST-1	Boring Number	er B-A3-4		
Project	Opitz Blvd				
Client	Whitman, Requardt	Whitman, Requardt & Associates, LLP (WR&A)			
Location	Woodbridge, VA				

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung Test Date: 12/20/2021 Checked By: OE Date: 12/23/2021

Report Created: 12/23/2021 Page 1

Coefficients of Consolidation

ASTM D2435

Technician: B.Aung

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/20/2021 Checked By: OE

Date: 12/23/2021

Report Created: 12/23/2021 Page 2

Summary

ASTM D2435

Sample Description	Clayey SAND (SC), contains roots & decay pieces of wood in tubes			
Project Number	21-0038 (WRA#45893-001) Depth (ft)	15.5	Remarks	
Sample Number	ST-1 Boring Num	ber B-A3-4		
Project	Opitz Blvd			
Client	Whitman, Requardt & Associates, LLP (WR&A)		
Location	Woodbridge, VA			

		Cummulative					T90	T50			
	Loading	Change in	Specimen	Height of	Vertical	*7 * 1	Fitting	Fitting	T90	T50	C
Indov	Sequence	Height	Height	Voids (in)	Strain	Void	Time	Time	Cv	Cv	Sequence
Index	(tsf)	(in)	(in)		(%)	Ratio	(Hr)	(Hr)	(in²/Min)	(in²/Min)	Status
0	0.000	0.0000	1.0000	0.0000	0.0	0.647	0.000	0.000	0.00000	0.00000	ENABLED
1	0.250	0.0132	0.9868	0.3784	1.3	0.622	0.016	0.004	0.89438	0.20778	ENABLED
2	0.500	0.0234	0.9766	0.3682	2.3	0.605	0.015	0.004	0.91317	0.21214	ENABLED
3	1.000	0.0365	0.9635	0.3551	3.7	0.584	0.031	0.007	0.43222	0.10041	ENABLED
4	2.000	0.0531	0.9469	0.3385	5.3	0.556	0.059	0.013	0.21528	0.05001	ENABLED
5	1.000	0.0508	0.9492	0.3408	5.1	0.560	0.000	0.000	0.00000	0.00000	ENABLED
6	0.250	0.0464	0.9536	0.3452	4.6	0.567	0.000	0.000	0.00000	0.00000	ENABLED
7	0.500	0.0491	0.9509	0.3425	4.9	0.563	0.013	0.003	0.96466	0.22410	ENABLED
8	1.000	0.0529	0.9471	0.3387	5.3	0.557	0.042	0.006	0.44211	0.10271	ENABLED
9	2.000	0.0580	0.9420	0.3336	5.8	0.548	0.028	0.005	0.52438	0.12182	ENABLED
10	4.000	0.0747	0.9253	0.3169	7.5	0.521	0.051	0.009	0.28608	0.06646	ENABLED
11	1.000	0.0696	0.9304	0.3220	7.0	0.529	0.000	0.000	0.00000	0.00000	ENABLED
12	0.500	0.0673	0.9327	0.3243	6.7	0.533	0.000	0.000	0.00000	0.00000	ENABLED
13	1.000	0.0694	0.9306	0.3222	6.9	0.530	0.041	0.007	0.37304	0.08666	ENABLED
14	2.000	0.0723	0.9277	0.3193	7.2	0.525	0.038	0.008	0.33359	0.07750	ENABLED
15	4.000	0.0778	0.9222	0.3138	7.8	0.516	0.048	0.011	0.23470	0.05452	ENABLED
16	8.000	0.0962	0.9038	0.2954	9.6	0.486	0.028	0.007	0.35842	0.08327	ENABLED

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung Test Date: 12/23/2021 12/20/2021 Checked By: OE Date: 12/23/2021

Consolidation Test - Results

Summary

Technician: B.Aung

ASTM D2435

Index	Loading Sequence (tsf)	Cummulative Change in Height (in)	Specimen Height (in)	Height of Voids (in)	Vertical Strain (%)	Void Ratio	T90 Fitting Time (Hr)	T50 Fitting Time (Hr)	T90 Cv (in²/Min)	T50 Cv (in²/Min)	Sequence Status
17	2.000	0.0925	0.9075	0.2991	9.2	0.492	0.000	0.000	0.00000	0.00000	ENABLED
18	0.250	0.0845	0.9155	0.3071	8.4	0.505	0.000	0.000	0.00000	0.00000	ENABLED

Consolidated Test Results

ASTM D2435

, ,	Opitz Blvd
Project Number:	21-0038 (WRA#45893-001)
Job Number:	
	12/20/2021

Sampling Date:	11/30/2021
Sample Number:	
Depth (ft)	
Boring Number:	
Location:	Woodbridge, VA
Client Name:	Whitman, Requardt & Associates, LLP (WR&A)
Remarks:	

Specific Gravity:	2.65	Plastic Limit:		Liquid Limit: 30		
Specific Gravity Method:	ASSUMED			Weight of Ring (g) 109.1		
Sampling Method:		Soil Classification:				
Specimen Description: Clayey SAND (SC), contains roots & decay pieces of wood in tubes						

Parameters	Initial	Final
Height (in)	1.0000	0.9155
Height Source	NA	TEST RESULTS
Diameter (in)	2.5000	NA
Area (in²)	4.909	NA
Volume (in³)	4.9087	4.4941
Weight of Container (g)	51.0	78.8
Weight of Wet Soil + Container (g)	204.8	230.6
Weight of Dry Soil + Container (g)	179.3	204.6
Moisture Content (%)	19.9	20.7
Moist Weight + Ring Weight (g)	264.3	261.1
Dry Density (pcf)	100.5	106.7
Wet Density (pcf)	120.4	128.9
Saturation (%)	81.4	99.9
Void Ratio	0.6	0.5

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1 Checked By: OE Date: 12/23/2021

Test Date: 12/20/2021

Consolidation Test Results

ASTM D2435

Technician: B.Aung

	Specimen 1						
Test Description:	Maximum Loading to 8tsf, unloading	cycle at 2 & 4 tsf.					
Other Associated Tests:							
Device Details:	Humboldt IPC5470 (CON-2)						
Test Specification:							
Test Time:	12/20/2021 12:00:00 AM						
Technician:	B.Aung	Sampling Method:	Undisturbed				
Specimen Code:		Specimen Lab #:					
Specimen Description:	Clayey SAND (SC), contains roots & d	lecay pieces of wood in	n tubes				
Specimen Preparation:	Cutting Shoe						
Large Particle:							
Moisture Content:	Inundated						
Test Condition:	initial seating 0.05TSF						
Test Procedure:	ASTM D2435						
Seating Pressure Used:	YES	Seating Pressure (tsf):	0.050				
Preconsolidation Stress:							
Percent Strain [LOC	G] Graph (tsf): NA	Final V	oids Graph (tsf): 0.893				

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: Report Created: 12/23/2021

Square Root Time [1] 0.250 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results		
T90 (Min)	0.967	
T50 (Min)	0.227	
Cv (in²/Min)	0.8944	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Test Date: 12/20/2021 Checked By: OE Date: 12/23/2021

Report Created: 12/23/2021 Page 7

Square Root Time [2] 0.500 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results		
T90 (Min)	0.913	
T50 (Min)	0.213	
Cv (in²/Min)	0.9132	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/20/2021 Checked By: OE

Date: 12/23/2021

Report Created: 12/23/2021 Page 8

Square Root Time [3] 1.000 tsf

ASTM D2435

Tangent Construction Results		
T90 (Min)	1.839	
T50 (Min)	0.426	
Cv (in²/Min)	0.4322	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Technician: B.Aung
Test Date: 12/20/2021
Checked By: OE

Report Created: 12/23/2021 Page 9

Date: 12/23/2021

Square Root Time [4] 2.000 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results		
T90 (Min)	3.550	
T50 (Min)	0.799	
Cv (in²/Min)	0.2153	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/20/2021 Checked By: OE

Report Created: 12/23/2021 Page 10

Date: 12/23/2021

Square Root Time [5] 1.000 tsf

ASTM D2435

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Technician: B.Aung
Test Date: 12/21/2021
Checked By: OE

Report Created: 12/23/2021 Page 11

Date: 12/23/2021

Square Root Time [6] 0.250 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/21/2021 Checked By: OE

Date: 12/23/2021

Report Created: 12/23/2021 Page 12

Square Root Time [7] 0.500 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	0.767
T50 (Min)	0.179
Cv (in²/Min)	0.9647

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Technician: B.Aung
Test Date: 12/21/2021
Checked By: OE

Report Created: 12/23/2021 Page 13

Date: 12/23/2021

Square Root Time [8] 1.000 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	2.525
T50 (Min)	0.384
Cv (in²/Min)	0.4421

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/21/2021 Checked By: OE

Date: 12/23/2021

Square Root Time [9] 2.000 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	1.684
T50 (Min)	0.317
Cv (in²/Min)	0.5244

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung

Test Date: 12/21/2021

Checked By: OE

Date: 12/23/2021

Square Root Time [10] 4.000 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	3.032
T50 (Min)	0.546
Cv (in²/Min)	0.2861

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung

Test Date: 12/21/2021

Checked By: OE

Date: 12/23/2021

Square Root Time [11] 1.000 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/21/2021 Checked By: OE

Date: 12/23/2021

Square Root Time [12] 0.500 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/21/2021 Checked By: OE

Date: 12/23/2021

Square Root Time [13] 1.000 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	2.479
T50 (Min)	0.422
Cv (in²/Min)	0.3730

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung

Test Date: 12/21/2021

Checked By: OE

Date: 12/23/2021

Square Root Time [14] 2.000 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	2.277
T50 (Min)	0.466
Cv (in²/Min)	0.3336

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1
Test Date: 12/22/2021 Checked By: OE

Date: 12/23/2021

Square Root Time [15] 4.000 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	2.909
T50 (Min)	0.647
Cv (in²/Min)	0.2347

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung

Test Date: 12/22/2021

Checked By: OE

Date: 12/23/2021

Square Root Time [16] 8.000 tsf

ASTM D2435

Tangent Construction Results	
T90 (Min)	1.695
T50 (Min)	0.395
Cv (in²/Min)	0.3584

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Technician: B.Aung

Test Date: 12/22/2021

Checked By: OE

Date: 12/23/2021

Square Root Time [17] 2.000 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Test Date: 12/22/2021 Checked By: OE Date: 12/23/2021

Square Root Time [18] 0.250 tsf

ASTM D2435

Technician: B.Aung

Tangent Construction Results	
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA

Project Name: Opitz Blvd Project Number: 21-0038 (WRA#45893-001), B-A3-4, ST-1

Test Date: 12/22/2021 Checked By: OE Date: 12/23/2021

APPENDIX E

Calculations

Seismic Site Classification & Overburden Corrections

Ñ by Sample No	Boring	N _i	Layer Top EL	Layer Bottom. EL	Layer Depth	Zį	d _i	d _i /N	Results
	(ft)	4.0	(ft)	(ft)	(ft)	(ft)	(ft)	1.000	B
S-1	0.0	10	200.0	190.0	10.0	10.0	10.0	1.000	Footing Depth
S-2	10.0	15	190.0	180.0	20.0	20.0	10.0	0.667	0.0
S-3	20.0	20	180.0	170.0	30.0	30.0	10.0	0.500	No of Layers:
S-4	30.0	50	170.0	160.0	40.0	40.0	10.0	0.200	10
S-5	40.0	50	160.0	150.0	50.0	50.0	10.0	0.200	Sample Length
S-6	50.0	100	150.0	140.0	60.0	60.0	10.0	0.100	10.00 ft
S-7	60.0	100	140.0	130.0	70.0	70.0	10.0	0.100	n
S-8	70.0	100	130.0	120.0	80.0	80.0	10.0	0.100	$\sum_{i=1}^{n} d_{i} = 100.0$
S-9	80.0	100	120.0	110.0	90.0	90.0	10.0	0.100	i=1 '
S-10	90.0	100	110.0	100.0	100.0	100.0	10.0	0.100	d.
									$\sum_{i=1}^{n} \frac{d_i}{N_i} = 3.067$
									i=1 '
									$\overline{N} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} \frac{d_i}{N_i}}$
									Average SPT N
									Ñ = 33
									Site Class:
									D

Ñ by	Layer		Sample	for SPT	Ave. SPT				Results	
Layers	Layer Depth	Soil Type	From	То	N_i	Zį	d _i	d _i /N	LAYERS	0
									Footing De 0.0	pth (z ₀)
									$\sum_{i=1}^{n} d_{i}$	0
									$\sum_{i=1}^{n} \frac{d_i}{N_i}$	0.000
									i=1 N _i	0.000
									Ave. SPT	
									Ñ =	
									Site Class:	

Internal Friction Angle

for Test Boring Samples skk 12/22/21 Ver.7.0

Test Boring: B-A1-6

ft

Sheet 2 of 4

Project: I-95 Expressway /Opitz Blvd

Boring No. B-A1-6

Woodbridge, VA

Ground Water Depth: 58.0

WRA # 32175-000

Hammer Efficiency: 0.850

Calc by: skk Date: 12/22/21 Chk by: scb Date: 12/22/21

Internal Friction Angle Estimations	Notes:	Round-off
Based on Corrected SPT N values	Methodology references are provided in sheet 3 of 3	Digits
		0

										U
Sample	z ⁱ	(N.)	Peck, Hans	on &Thornburn		& Uchida	Japan SHB	NC-DOT	AASHTO LRF 10.4.6	D 2016 Table
No.	Z	(N ₁) ₆₀	Kulhawy (1990)	Wolff (1989)	Original (1996)	Mayne (2001)	Јаран эпь	0.3(N+90)	Min	Max
S-1	2.0	29	36	35	44	41	36	31	30	35
S-2	4.0	10	30	30	34	32	27	29	27	32
S-3	7.5	34	37	37	44	43	38	33	35	40
S-4	10.0	12	31	31	35	34	28	29	30	35
S-5	12.5	11	30	30	35	33	28	29	30	35
S-6	15.0	9	30	30	33	32	27	29	27	32
S-7	17.5	11	30	30	35	33	28	29	30	35
S-8	20.0	13	31	31	36	34	29	30	30	35
S-9	25.0	9	30	30	33	32	27	29	27	32
S-10	30.0	16	32	32	38	36	30	31	30	35
S-11	35.0	18	33	32	39	37	31	32	30	35
S-12	40.0	7	29	29	32	30	25	29	27	32
S-13	45.0	11	30	30	35	33	28	31	30	35
S-14	50.0	35	37	37	44	43	38	39	35	40
S-15	55.3	85	46	49	44	56	45	57	38	43
S-16	60.0	82	45	48	44	56	45	57	38	43

Internal Friction Angle

Results Summary

skk 12/22/21 Ver.7.0

Test Boring: B-A1-6

Sheet 3 of 4

Project: I-95 Expressway /Opitz Blvd Boring No. 3-A1-6

Woodbridge, VA Ground Water Depth: 58.0 ft
WRA # 32175-000 Hammer Efficiency: 0.850

Calc by: scb Date: Chk by: Date: 12/22/21

						ī			•					
Layer Ir	nput Top			SPT Sam	anlo No	Ave		Hanson Inburn	Hatan Uch	iaka & nida	Japan	NC-DOT		
Layer No.	Depth (ft)		Layer pe	From	To	(N ₁) ₆₀	Kulhawy (1990)	Wolf (1989)	Original (1996)	Mayne (2001)	SHB	NC-DOT	Rar Min	nge Max
1	0	Fill		1	8	16	32°	32°	38°	36°	30°	32°	30°	38°
2		Potoma)C	9	11	14	31°	31°	37°	35°	30 29°	31°	30 29°	37°
3		Residua		12	13	9	30°	30°	33°	32°	27°	30°	27°	33°
4		Dr	11	14	16	67	43°	45°	44°	52°	45°	47°	43°	53°
4	40	DI		14	10	07	43	40	44	52	45	47	43	52
	Soloct	ed Sample	20	(workshe	not)									
Layer	1	2	3	4	5	6	7	8	9	10	11	12	Notes	
Layer-1	1	2	3	4	5	6	7	8	,	10	11	12	110103	
Layer-2	9	10	11	7	<u> </u>	U	,	U						
Layer-3	12	13	, , ,											
Layer-4	14	15	16											
Layer 4	17	13	10											
	SPT N	Values		(works	heet)									N _{Ave}
Layer-1	29	10	34	12	11	9	11	13						16
Layer-2	9	16	18											14
Layer-3	7	11												9
Layer-4	35	85	82											67

Internal Friction Angle

Reference

Test Boring: B-A1-6

Sheet 4 of 4

Project: I-95 Expressway / Opitz Blvd

Boring No. B-A1-6

Chk by: scb

Woodbridge, VA

Ground Water Depth: 58.0

WRA # 32175-000

Hammer Efficiency: 0.850

Calc by: skk

Date: 12/22/2021 Date:

12/22/21

Reference:

NCHRP REPORT 651

LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures

Table 30. Summary of equations correlating internal friction angle (Φ_t) to corrected SPT N value $(N_1)_{60}$.

Reference	Correlation equation	Equation no.
Peck, Hanson, and Thornburn (PHT) (1974) as mentioned in Kulhawy and Mayne (1990)	$\phi_f \approx 54 - 27.6034 \cdot \exp(-0.014(N_1)_{60})$	(100)
Hatanaka and Uchida (1996)	$\phi_f = \sqrt{20(N_1)_{60}} + 20$ for $3.5 \le (N_1)_{60} \le 30$	(101)
PHT (1974) as mentioned by Wolff (1989)	$\phi_f = 27.1 + 0.3(N_1)_{60} - 0.00054(N_1)_{60}^2$	(102)
Mayne et al. (2001) based on data from Hatanaka and Uchida (1996)	$\phi_f = \sqrt{15.4 \left(N_1\right)_{60}} + 20$	(103)
Specifications for Highway Bridges (SHB) Japan, JRA (1996)	$\phi_f = \sqrt{15(N_1)_{60}} + 15$ for $(N_1)_{60} > 5$ and $\phi_f \le 45^\circ$	(104)

Note: p_a is the atmospheric pressure and σ_v is effective overburden pressure in the same units. For English units, $p_a = 1$ and σ_v is expressed in tsf at the depth N_{60} is observed. $(N_1)_{60}$ is the corrected SPT N value corrected using the correction given by Liao and Whitman (1986):

$$(N_1)_{60} = \sqrt{\frac{p_a}{\sigma'_{ir}}} \cdot N_{60}$$
 (103)

AASHTO LRFD 2016 Table 10.4.6.5.4-1

(Description boundaries modified)

(N ₁) ₆₀	Frictio	n Angle	
(141760	Min	Max	Descrip.
1	25	30	Very
4	25	30	Loose
5	27	32	Loose
10	27	32	LUUSE
11	30	35	Mediu
30	30	35	m
31	35	40	Dense
50	35	40	Delise
51	38	43	Very
100	38	43	Dense

Overburden Correction References

Liao and R.V.Whitman, 1986, "Overburden Correction Factors for SPT in Sand" Journal of Geotechnical Engineering, ASCE, v.112:3, p.373-377

AASHTO Equation 10.4.6.2.4-1

$$N1 = C_{N}N \tag{10.4.6.2.4-1}$$

N1 = SPT blow count corrected for overburden pressure, o', (blows/ft)

 $C_N = [0.77 \log_{10} (40/\sigma'_{\nu})], \text{ and } C_N < 2.0$

 σ'_{ν} = vertical effective stress (ksf)

N = uncorrected SPT blow count (blows/ft)

APPENDIX E.2

MSE Wall Calculations – Wall 1, Wall2, and Wall 3

APPENDIX E.2

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

Sheet 1 **MSE Wall - External Stability Check** Version: 2016-06

Static Sliding, Eccentricity & Bearing

Coding: skk 10/27/2016 Ref:FHWA-NHI-10-024 &025 Validation: scb by MSE-W 10/31 Project: Opitz Blve WRA#: 032023.000 Design: skk 12/14/2021 SCB 12/21/21 Str. No. Wall-2 @ Abutment C Wall No.: Wall 2 Check: Assumptions/Notes: Front of the abutment is modeled as a triangular portion. Lateral loads behind the wall are assumed to be horizontal (per MSE-W assumption for slope < 45 deg.) Wall Configuration Backfill Slope **Broken Back Slope:** Тор Z Fill (t) Height z (ft.)= Length x (ft.)= H_e Reinforced Fill at Н Infinite Backfill: Yes Soil (r) Back (f) Infinite Slope β_{inf} = 0.00 Fall face assumed vertical Foundation 0.00 deg. Soil (fd) Δh Case $oldsymbol{eta}_{\mathsf{eq}}$ h 0.00 30.00 0.00 Wall Dimensions Exposed wall height $H_{\rm e}$ = 28.00 ft. Table C.11..10.2.2.-1 Minimum Embedment Minimum Embedment = H/20Embedded Height d = 2.00 ft. 1.50 ok Total Wall Length 36.00 ft. <== (for bearing capacity calculations) Reinforced Backfill Friction Angle **φ**_r = 34.0 degree Unit Wt. 105.0 pcf Retained Fill (f) (above and behind reinf. zone) 32.0 degree ф = 120.0 pcf $\gamma_f =$ Foundation Soil: 32.0 degree 120.0 pcf **φ**_{fd} = γ_{fd} = $C_{\text{fd}} = 0.0$ Mayerhof Bearing, q_{ult} = Cohesion: psf 20.96 ksf Friction Angle 34.0 degree Top of wall Backfill Unit Wt. $\Phi_{\dagger} =$ 105.0 pcf $\gamma_t =$ Surcharge Loading Traffic @ wall Top 250 psf Dead -top o psf q_{T-t} = \downarrow $q_{D-t}=$ \downarrow Traffic @ behind wall 250 psf Dead -Behind \downarrow $q_{T-b}=$ o psf $q_{D-b}=$ Added horizontal Load $P_{\rm BR-H}=$ 1000 lb/LF Design Height and Estimated Reinforcement Length Estimated Reinforcement Length: L = 23.00 ft. Check for minimum L 30.00 ft. Design Height of the wall: $H = H_e + d$ 7.0 ft. *ok* $L_{\min} =$ 0.77 (L/H) ok Ratio for Estimated Reinforcement Length (> 0.7): $L \leq 2H$ ok to use this spreadsheet **Results Summmary** Bearing Resistnace: LRFD: ASD: CDR= $FS_{Sliding}$ Required Factored Bearing= **Direct Sliding** 1.477 2.277 6.427 ksf CDR= Bearing Resist. 2.120 5.061 Required Service Bearing= 4.141 ksf FS_{bearing} e/L =0.129 3.11 ft 1.244 e/L =0.201 Critical e/L = 0.135e =

MSE Wall - External Stability Check Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

skk 10/27/2016 Coding:

			/A-NHI-10	1-U24 &U2!)				Va	alidation:	scb by MS	
Project:	Opitz Blv	/e				WRA#:	032023.	000		Design:	skk 12/	14/202
Str. No.	Wall-2 @	Abutme	ent C	-	-			-		Check:	SCB 1	2/21/21
							: : :		<u>.</u>	<u></u>	: :	
Load Fa	ctors		EV	EH	ES	LS			nce Facto		: :	
Strength	I (maximu	ım)	1.35	1.50	1.50	1.75	ļ	Sliding of	f MSE wal	l on found	dation soil	1.0
Strength	I (minimu	m)	1.00	0.90	0.75	0.00	: : : :	Bearing r	esistance	: : :	: : : :	0.6
Service I			1.00	1.00	1.00	1.00	0	Tensile r	esistance	(for steel	strips)	0.7
Calculat	ion of $oldsymbol{eta}_\epsilon$	and <i>h</i>			: 0	- - - - -	: 0		: 0	: : : :	: 0	
L =			H=	30.0	ft.	<i>X</i> =		ft.	<i>Z</i> =		ft.	
Case Des	cription			$oldsymbol{eta}_{eq}$			A /-		-	$L_R = L - L_T$	······································	
	For x <z;< td=""><td>$\beta_{eq} = 0$</td><td></td><td></td><td>EΔn = z</td><td>3</td><td>ΔΠ</td><td>L_T=0</td><td><u> </u></td><td></td><td></td><td></td></z;<>	$\beta_{eq} = 0$			E Δ n = z	3	ΔΠ	L _T =0	<u> </u>			
		β _{eq} =tan ⁻				7 / v		ļ	<u> </u>			
	L <x< 2h<="" td=""><td>$oldsymbol{eta}_{\sf eq}$=tan</td><td>¹ (z/2H)</td><td></td><td>Δh = L2</td><td>z/x</td><td></td><td>L_T=L</td><td></td><td></td><td></td><td></td></x<>	$oldsymbol{eta}_{\sf eq}$ =tan	¹ (z/2H)		Δ h = L2	z/x		L _T =L				
	x > 2H	β _{eq} = tan	$^{-1}(z/x)$		$\Delta h = Lz$	z/x		j	ģ			
									0	23.00	0	
	<=Curren					Δ h =		ļ	0.00	Ī	§	
	β _{eq} =			h= H +		h =	30.00					
							-			-		
Coulom	h Activo	Earth Dr	essure Co	oofficion	<u> </u>	for Reta	inad fill					
			AASHTC			TOI NETA			- -		: :	
Nereren	Je. Ly. J.	11.3.3-1			: 0	<u>-</u>	: 	Note:	φ' > β	ሐf' –	32.0	deare
$K_A =$:		sin ²	$(\theta + \phi')$				inoto.	Ψ / μ	φι – β =	9	degree
A				sin(b	$+\delta$) sir	$\frac{1}{1(\phi'-\beta)}$	2	θ = 90 +	α	θ=		degree
	sin ²θ	sin (θ-	-8) 1+	$\sqrt{\sin(\theta)}$	$-\delta$) sin	$\frac{1(\phi'-\beta)}{1(\theta+\beta)}$		$\delta = \beta$		δ =	0.0	degree
			L	y Dill(0	0) 511	(o , b)		- P			. 0.0	acgree
T 1 =	0.2808		T ₂ =	1		Γ=[1+	sart(T ₁ /	:	Г=	2.3407	:	
	0.7192		$T_{b}=$	1	· · · · · · · · · · · · · · · · · · ·	$K_A = T_t$			K _{af} =		: : :	
, [_	J., 1,72		, p_			'`A ' [D	- <i>,</i>	, `ar =	0.007	: 0	
Pankino	Earth Dr	assura (Coefficier	nte	 		Equation	n 5 12 fr	om FH\M	'A-IF-03-(117	
Natikitie	∟ai ti i Pi		JOETHUR	113	: 0	<u>:</u>	Lyuatio	,		purposes		
	13	cos	β-√co	$s^2 \beta - c$	os² d']	: :		0.5299		$T_{\cos} =$	
K _A	$=\cos\beta$		β - √co β + √co	-2 0	2 11		: : :			ons- T sq)/(ă	``````````````````````````````````````
		cos	$p + \sqrt{co}$	s-β-0	cos o'	J	: :	Λ _A =		ons 7 sq)//		<i>)</i>
Noto:					-	:	: : :		ΛΑ-	0.307	: 	
Note:			: ::::::::::::::::::::::::::::::::::::		: 9	:	: 9		: 9	: :	: ?	
)		: 0	 !	: 0		: g	 !	: 0	: [: g	
					: 	: 	: 0 1		 	- 	- - - 	
			0		0		: 0 :				: 0 :	
			: :		: : :	-	: : :		: 5	- - - -	: : :	
			-		-	:	-		-	-	-	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

 Project: Opitz Blve
 WRA#: 032023.000
 Design: skk 12/14/2021

 Str. No. Well 2 @ Abutment C
 Check: SCB 12/21/21

	Ctr No	•					V V Ι Λ - Λ .	032023.0		-	-	SCB 12/2	_
-	Str. No.			ent C			=	<u> </u>			uneck:	JUD 12/	≤ 1/∠ l
	Loads a			i r			<u> </u>	Q _{T-t}					1
	Data for							-1-1					
		23.00					J	Q_{T-t}		P _H			
	H=					V	I/						
		30.00				/	1	V _R					
	L _T =				1								
	L _R =	23.00	ft.			\(\(\)	->< R	L _T	->	Q _{T-t}	Q _{T-t}		
	$K_{af} =$	0.307					- 1		h	1		FT	
	γ_r =	105.0	pcf		Н		1	V ₁			\		
	$\gamma_{f}=$	120.0	pcf							h/2	1	,	
	$\gamma_{t}=$	105.0	pcf		<u> </u>					1,77	/n/	3	
	β=	0.00				25,720	$\mu \sum V$						
	q_{Dtop} =		psf			_		L	-				
	$q_{ extsf{D-b}}$ =	0	psf										
	$q_{\text{T-top}}$ =	250	psf										
	$q_{ extsf{T-beh}}$ =			р _н =	1000	lb/LF		rounding	force	2	length	2	2
	Un-facto	red Load	ds: Hor	izontal, V	ertical &	Mome	nt about	Point A				-	M
										(kips/LF)	12	(ft.)	(ft. kips)
1	$V_1 = \gamma_r F$	1 L		Reinforced	d Mass		EV	Ţ	<i>V</i> ₁	72.45	L/2=	11.50	833.18
												- - - - -	
2	$V_{T} = (1/2)^{-1}$	2) γ _t (h-F	H) L _T	Top Tringl	e Mass		EV	ļ	V_{T}	0.00	2L _T /3=	0.00	0.00
						0				D		0	
3	$V_{R} = \gamma_t$ ((h-H) L _R		Top Recta	ngle Mass		EV	Ţ	V_{R}	0.00	L _T + L _R /2=	11.50	0.00
"						Ď		diri		j		å : :	
4	$F_{\text{TV}} = (1/2)$	$(2) \gamma_f h^2 K$	_{af} sin β	Earth Pres	sure		EH	Ţ	F _{TV}	0.00	L =	23.00	0.00
		F _T =	16.58	-									
5	$F_{TH} = (1/2)$	$(2) \gamma_f h^2 K$	_{af} COS β	Earth Pres	sure		EH	←	F _{TH}	16.58	h/3=	10.00	165.80
6	$Q_{\text{D top-V}}=$	$(q_{\rm Dton})$	L	Surch.Dea	d:Top		ES-t	1	Q _{Dtop-V}	0.00	L/2=	11.50	0.00
	D top v	, , , , ,							Brop v			<u> </u>	
7	$Q_{DV} = (q$	n) h K af	sin β	Surch.Dea	d:Behind		ES-b	1	Q_{DbV}	0.00	L =	23.00	0.00
			············						554			 !	
8	$Q_{DH}=(q$	n) h K af	cos ß	Surch.Dea	d:Behind		ES-b	←	Q_{DbH}	0.00	h/2=	15.00	0.00
	- 511 (7	ال · · dl	.						- טטח				
9	$Q_{Ttop-V} =$	(a _T)		Surch.Trat	fic:Ton		LS-t	ı	Q _{T top-V}	5.75	L/2=	11.50	66.13
	- 1 top-v	(717-						*	— 1 top-v	5.75			55.10
10	$Q_{TV} = (q - q)^{-1}$, b) h K .	sin R	Surch.Traf	fic:Rehind	0	LS-b	1	Q_{TbV}	0.00	L =	23.00	0.00
	210 (9	at ייי גט- ו at	5.1.1 p	our on. mai			LU D	+	∠ IDV	0.00		20.00	0.00
10		-					=						
	О _{тн} = (q _{т-ь)}) h K as nos	R+Ppp	Surch.trafi	fic-Rahind		LS-b	—	Q_{TbH}	3.30	h/2=	15.00	49.50

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Project: Opi	z Blve				WRA#: 032023.000				Design:	skk 12/14/2021		
Str. No. Wal	I-2 @ Abutme	ent C						•	Check:	SCB 12/21/21		
Static Slidir	ng			5		2	= = = = =	3	=	4		
5	9	11	8			Strength	I(max)	Strength	I(Min)	Critical		
Horizontal [Oriving Forces	S		А	SD	Max.Loa	d Factor	Min.Loa	d Factor	Crit.Loa	d Factor	
Horizontal Ford	Ξ.			Factor	Load	Factor	Load	Factor	Load	Factor	Load	
5 Earth Pressure	←	16.58	EH	1.0	16.58	1.50	24.87	0.90	14.92	1.50	24.87	
8 Surch.Dead:Beh	ind ←	0.00	ES-b	1.0	0.00	1.50	0.00		0.00	1.50	0.00	
11 Surch.traffic:Be	hind ←	3.30	LS-b	1.0	3.30	1.75	5.78	=	0.00	1.75	5.78	
Tota	l Horizontal		ΣH _{driving}	7	19.88		30.65		14.92		30.65	
Vertical Loads												
1 Reinforced Mas	s ↓	72.45	EV	1.0	72.45	1.35	97.81	1.00	72.45	1.00	72.45	
2 Top Tringle Mas	s ↓	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
3 Top Rectangle N	∕lass ↓	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00		
4 Earth Pressure	↓	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00	
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
7 Surch.Dead:Beh	ind ↓	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
9 Surch.Traffic:To	p ↓	5.75	LS-t	0.0	0.00	1.75	10.06	0.00	0.00	0.00	0.00	
O Surch.Traffic:Be	hind ↓	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00	
Tota	l Vertical		ΣV		72.45		107.87		72.45		72.45	
Resisting Horiz	ontal Loads for	Φ crit=	32.00		ASD		Max		Min		Crit.	
1 Reinforced Mas	s↓	8			45.27		61.12	- - - -	45.27		45.27	
2 Top Tringle Mas	is ↓	Ö			0.00		0.00	- - - - - -	0.00		0.00	
3 Top Rectangle N	∕lass ↓				0.00		0.00	- - - - - -	0.00		0.00	
4 Earth Pressure	↓				0.00		0.00	- - - - - -	0.00		0.00	
6 Surch.Dead:Top	\				0.00		0.00	- - - - - -	0.00		0.00	
7 Surch.Dead:Beh	ind ↓	0			0.00		0.00	0	0.00		0.00	
9 Surch.Traffic:To	p 🗸	0			0.00		6.29	0	0.00	0	0.00	
0 Surch.Traffic:Be	hind ↓				0.00		0.00	0	0.00		0.00	
Cohe	esion $C_{H} = C_{fd}$	L			0.00		0.00		0.00		0.00	
			ΣV _{resist}		45.27		67.40	- - - - -	45.27	<u>.</u>	45.27	
Results								-	-			
ASD	FS _{SL} =	2.277					Load F	Max	Min	Crit	ASD	
LRFD		1.477					EV	1.35	1.00	1.00	1.0	
	geogrid reinf						EH	1.50	0.90	1.50	1.0	
ang	gle may be ta	ken as m	inimum (of ϕ_{fd} and			ES-t	1.35	1.00	1.00	1.0	
two	thirds of rein	nforced s	oil frictio	n angle,	$(2/3) \phi_r$		ES-b	1.50	0.75	1.50	1.0	
	φ fd= 32.00		Sli	ding ф r=	34		LS-t	1.75	0.00	0.00	0.0	
2/3	Φ_{r} = 22.67			φ _{crit} =	22.67		LS-b	1.75	0.00	1.75	1.0	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Str. No. Wall-2	a Ahutmei	nt C							Check.	heck: SCB 12/2	
Eccentricity:	Abutine	11 0		5		2		3	OHCCK.	4	
5	0		8				ii		-	.	
J				ASD	LRFD	Max.Load	Factored	Min.Load	Factored	Crit.Load	Factored
Moments: Counte	r-Clockwis	14		Un-facto	red	Factor	Load	Factor	Load	Factor	Load
5 Earth Pressure	←	165.80	EH	1.0	165.80	1.50	248.70	0.90	149.22	1.50	248.70
8 Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
11 Surch.traffic:Behind	←	49.50	LS-b	1.0	49.50	1.75	86.63	0.00	0.00	1.75	86.63
Total: Counter-Clo	ckwise Mo	ments	Σ M ₋		215.30		335.33		149.22		335.33
				: :					-		
Moments: Clockw	ise	14		-						-	-
1 Reinforced Mass	\downarrow	833.18	EV	1.0	833.18	1.35	1124.79	1.00	833.18	1.00	833.18
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	66.13	LS-t	0.0	0.00	1.75	115.73	0.00	0.00	0.00	0.00
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total: Clockwise N	10ments		ΣM_+		833.18		1240.52		833.18		833.18
5	9			- - - -	8				- - - - - - -	: : : :	- - - - -
Vertical Load		11		0					- - - - - 	0	
1 Reinforced Mass	\downarrow	72.45	EV	1.0	72.45	1.35	97.81	1.00	72.45	1.00	72.45
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	5.75	LS-t	0.0	0.00	1.75	10.06	0.00	0.00	0.00	0.00
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total Vertical Load			ΣV		72.45		107.87		72.45		72.45
	it from po				8.53		8.39		9.44	: :	6.87
Eccentr	icity: e	= L/2-y	(ft.)						-		
				<u>.</u>			Load F	Max	Min	Crit	ASD
Results:		:		-			EV	1.35	1.00	1.00	1.0
	E	e=L/2-y	e/L	Ē			EH	1.50	0.90	1.50	1.0
ASD	ş	2.97 ft.	0.129	Ok			ES-t	1.35	1.00	1.00	1.0
LRFD Max		3.11 ft.	0.135	Ok			ES-b	1.50	0.75	1.50	1.0
LRFD Min		2.06 ft.	0.090	Ok			LS-t	1.75	0.00	0.00	0.0
LRFD Crit.		4.63 ft.	0.201	Ok			LS-b	1.75	0.00	1.75	1.0

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Project: Opitz Bl	ve				WRA#:	032023.	000		Design:	skk 12/	14/2021
Str. No. Wall-2	Abutme	nt C							Check:	SCB 12/2	21/21
Critical Bearing	 :			5		2		3		4	
5	9	14	8	Eccentr	i Eccentri	city: e	= L/2-y	Meye	rhof str.	$\sigma_{V} = \Sigma V$	/(L -2e)
				ASD	LRFD	Max.Load	Factored	Min.Load	Factored	Crit.Load	Factored
Moments: Counte	r-Clockwis	е		Un-factor	ed	Factor	Load	Factor	Load	Factor	Load
5 Earth Pressure	←	165.80	EH	1.0	165.80	1.50	248.70	0.90	149.22	1.50	248.70
8 Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
11 Surch.traffic:Behind	←	49.50	LS-b	1.0	49.50	1.75	86.63		0.00	1.75	86.63
Total: Counter-Clo	ckwise Mo	oments	ΣΜ.		215.30		335.33		149.22		335.33
5	9	14	8	-					-		
Moments: Clockw	ise			= = = = = =					= = = = = =		
1 Reinforced Mass	\downarrow	833.18	EV	1.0	833.18	1.35	1124.79	1.00	833.18	1.35	1124.79
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	66.13	LS-t	1.0	66.13	1.75	115.73	0.00	0.00	1.75	115.73
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total: Clockwise N	1oments		ΣM_{+}		899.31		1240.52		833.18		1240.52
5	9	11	8	-							
Vertical Load				-	-				-		
1 Reinforced Mass	\downarrow	72.45	EV	1.0	72.45	1.35	97.81	1.00	72.45	1.35	97.81
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	5.75	LS-t	1.0	5.75	1.75	10.06	0.00	0.00	1.75	10.06
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.00	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total Vertical Load	ds		ΣV		78.20		107.87		72.45		107.87
Resultan	it from po	int A, <i>y</i>	(ft.)		8.75		8.39		9.44		8.39
				-					1.5		
Results:	ASD	LRFD	LRFD	LRFD			Load F	Max	Min	Crit	ASD
	Ser.	Max	Min	Crit.			EV	1.35	1.00	1.35	1.0
ΣV (kips)	78.20	107.87	72.45	107.87			EH	1.50	0.90	1.50	1.0
(ft)	8.75	8.39	9.44	8.39)		ES-t	1.35	1.00	1.50	1.0
e = L/2-y (ft)	2.75	3.11	2.06	3.11		7	ES-b	1.50	0.75	1.50	1.0
e/L	0.120	0.135	0.090	0.135		0	LS-t	1.75	0.00	1.75	1.0
σ _V =ΣV /(L -2e) (ksf)	4.470	6.427	3.837	6.427		0	LS-b	1.75	0.00	1.75	1.0
							1 50	Chosen to	match MS	E-W approa	ach

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Project:	Project: Opitz Blve				WRA#:	032023.	000	Design:		skk 12/14/2021		
-	Wall-2 @ Abut	ment C		•					_	SCB 12/21		
_	Bearing (ctd)		* * * * * * * * * * * * * * * * * * *									
									······································	······································	*************	
				- - - - - -	Founda	ion Leng	jth L _w =	23.0	ft.			
	: : : : :	Mayerhof I	Bearing (Capacity/								
	• • • • • • • • • • • • • • • • • • •	:	:									
ASD	Values corresp	onds to un	-factored	d loads &	capaciti	es						
	Eccentricity			- - - - -	е		ft.					
	Vertical Loads	, un-factore	ed	- - - - -	ΣV	72.45	kips/LF					
- -	Required Allov	wable Beari	ng Capac	city	σ _V =	4.14	ksf					
-	Ultimate Bear	ing Capacity	y	- - - - - -	$q_{ m ult}$ =	20.96	ksf			-		
	Factor of Safe	ty against B	earing	F	S _{bearing} =					-		
				-								
LRFD	Values corresp	oonds to ma	aximum l	oad fact	ors		Serv.	Max	Min	Crit.		
	Eccentricity			**************************************	e		2.75	3.11	2.06	3.11		
	Vertical Loads	, un-factore	ed	-	ΣV		78.20	107.87	72.45	107.87		
	Required Fact	ored Bearin	g Stress	-	σ _V =		4.47	6.43	3.84	6.43		
	Nominal Beari	ing Capacity	1	- - - - -	$q_{ m ult}$ =		20.96	20.96	20.96	20.96		
	Resistance fac	tor for Bear	ring:	- - - - -	Φ _b =		0.5	0.65	0.65	0.65		
	Factored Bear			- - - - -			10.48	13.62	13.62	13.62		
				-	CDR=		2.34	2.12	3.55	2.12		
		Bea	aring Res	sistance:	CDR _{min} =	2.12						
Summa	ry:											
	LRFD CDR	Target	Calc.			ASD FS		Target	Calc.			
	Sliding	1.00	1.48	ok		Sliding		2.00	2.28			
	Bearing	1.00	2.12	=		Bearing		3.00	5.06			
		-		-								
	Eccentricity	Max	ASD	LRFD								
	e/L	0.250	0.129	0.201								
			ok	ok	<u></u>							
: :			: : :	- - - - -	: :							
	Bearing Resist			: : :								
		ired Factore				6.43	ļ					
	Requi	ired Allowa	ble Beari	ng Capad	city:	4.14	ksf					
				- - - - -								
Notes:	For excentricit	ty and slidin	ng :	- - - - -	- -							
	9			- - - 0	- - - -							
	9			- - -								
	9			- - - -								
			- - -	- - - - -	- - -							

MSE Wall - External Stability Check Static Sliding, Eccentricity & Bearing Ref:FHWA-NHI-10-024 &025 Project: Opitz Blve Str. No.: Wall-2 @ Abutment C Sheet 8 Version: 2016-06 Coding: skk 10/27/2016 Validation: scb by MSE-W 10/31 Design: skk 12/14/2021 Str. No.: Wall-2 @ Abutment C

EVALUATION OF NOMINAL BEARING RESISTANCE

DATA FROM PF	REVIOUS SH	HEETS:									
Soil Paramete	rs								20.96		
Cohesion	C =	0.0 p	sf	Foundatn Sub	ogr. Soil Uni	t Wt. γ_{fs}	i	125.0	pcf		
Friction Ang. ϕ_f	=	32.0 d	egree	Surcharge Soi	Surcharge Soil Unit Wt. $\gamma_{ m sur}$						
Soils above fo	oting bear	ing are as	competent a	as subgrade soils	s?			Yes			
Foundation D	imensions	3									
Footing Width	B=	23.00 ft	.•	Footi	ng Depth	$D_f =$		2.00	ft		
Footing Lengtl	n L=	36.00 f	•	G.Wa	iter Depth	$D_w =$		50.00	ft		
Foundation Lo	oads:										
Unfactored Ve	ert. Load V	'=	72.5 kips	Load	Angle θ		0.0	deg			
Unfactored Ho	orz.Load H	=	19.9 kips	Mom	ent:						
Eccentricity:		e _b =	3.0 ft.	(<5.8) ok	e_L (ft)=			(<9.0)	ok		
Bearing Capaci $N_c=(N_q-1)$ cotd	ity Factor	·S:	AL RESISTANCI _q +1) tanφ		πιαιιφ) tan²(45	ō ^υ +φ/2)					
$N_c = 35.49$		$N_{\gamma} = 3$	0.21	$N_q = 23.18$							
Effective Foot	ing Dimer	nsions:		(Area reduction	(Area reduction for assumed eccentricity)						
$B' = B - 2e_b$	= 17.1	ft			$L'=L-2e_L=$	3	36.0	ft			
Footing Shape	e Correction	on Factors	:								
For φ = 0	$S_c = 1 + ($	(B'/5L')		$S_{\gamma} = 1.0$			$S_q = 1$				
For $\phi > 0$ $S_c = 1 + (B'/L') (N_q/N_c)$				$S_{\gamma} = 1 - 0.4 \text{ (B)}$	/L')	Ç	$S_{q} = 1 + (1)$	B'/L') taı	٦ф		
	$S_c =$	0.963		$S_{\gamma} = 0.8$	31	S _q = 1.296					
Groundwater	Correctio	n Factors									
	$C_{wq} =$	1.000			$C_{w\gamma}$ =		1.000				
Depth Correct											
Competent su	rcharge so	oils: Y	es	D _f /E	3= 0.12		d _a =	1.00			

0.640

B term 16.34

0.465

2.0

0.65

i_γ =

ASD FOS

LRFD Φq

Factored q 13.62 ksf

N	U.	TF	S

C term

 $i_c =$

Load Inclination Factors:

Nominal Bearing Resistance:

0.00

 $q_n = 20.96 \text{ ksf}$

1.000

Calc based on assumed foundation length and water table depth.

Allowable q 10.48 ksf

 $i_q =$

4.62

 $q_n = c \left(N_c S_c i_c \right) + \gamma_{sur} D_f \left(N_q S_q d_q i_q \right) C_{wq} + 0.5 \gamma_{fs} B \left(N_{\gamma} S_{\gamma} i_{\gamma} \right) C_{w\gamma}$

q term

MSE Wall - External Stability Check Static Sliding, Eccentricity & Bearing

Version: 2016-06

Coding: skk 10/27/2016

Ref:FHWA-NHI-10-024 &025 Validation: scb by MSE-W 10/31 Project: Opitz Blve WRA#: 032023.000 Design: skk 01/03/2021 scb 01/03/2022 Str. No. Walls 1 & 3 at Abut.C Wall No.: Max H=30' Check: Assumptions/Notes: Front of the abutment is modeled as a triangular portion. Lateral loads behind the wall are assumed to be horizontal (per MSE-W assumption for slope < 45 deg.) Wall Configuration Backfill Slope **Broken Back Slope:** Тор Z Fill (t) Height z (ft.)= Length x (ft.)= H_e Reinforced Fill at Н Infinite Backfill: Yes Soil (r) Back (f) Infinite Slope β_{inf} = 0.00 Fall face assumed vertical Foundation 0.00 deg. Soil (fd) Δh Case $oldsymbol{eta}_{\mathsf{eq}}$ h 0.00 30.00 0.00 Wall Dimensions Exposed wall height $H_{\rm e}$ = 28.00 ft. Table C.11..10.2.2.-1 Minimum Embedment Minimum Embedment = H/20Embedded Height d = 2.00 ft. 1.50 ok Total Wall Length 36.00 ft. <== (for bearing capacity calculations) Reinforced Backfill Friction Angle **φ**_r = 34.0 degree Unit Wt. 105.0 pcf Retained Fill (f) (above and behind reinf. zone) 34.0 degree ф = 105.0 pcf $\gamma_f =$ Foundation Soil: 30.0 degree 120.0 pcf **φ**_{fd} = γ_{fd} = $C_{\text{fd}} = 0.0$ Mayerhof Bearing, q_{ult} = Cohesion: psf 16.64 ksf Friction Angle Top of wall Backfill 34.0 degree Unit Wt. $\Phi_{\dagger} =$ 105.0 pcf $\gamma_t =$ Surcharge Loading Traffic @ wall Top 250 psf Dead -top o psf q_{T-t} = \downarrow $q_{D-t}=$ \downarrow Traffic @ behind wall 250 psf Dead -Behind \downarrow $q_{T-b}=$ o psf $q_{D-b}=$ Added horizontal Load $P_{\text{BR-H}}=$ 100 lb/LF Design Height and Estimated Reinforcement Length Estimated Reinforcement Length: L = 21.00 ft. Check for minimum L 30.00 ft. Design Height of the wall: $H = H_e + d$ 7.0 ft. *ok* $L_{\min} =$ 0.70 (L/H) chk Ratio for Estimated Reinforcement Length (> 0.7): $L \leq 2H$ ok to use this spreadsheet **Results Summmary** Bearing Resistnace: LRFD: ASD: CDR= $FS_{Sliding}$ Required Factored Bearing= **Direct Sliding** 1.595 2.450 6.256 ksf CDR= Bearing Resist. 4.053 ksf 1.729 4.106 Required Service Bearing= FS_{bearing} e/L = 0.186 CDR= e/L =2.63 ft 1.344 Critical 0.120 e =

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing
Pof:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Strength I (minimum) 1.00 0.90 0.75 0.00 Bearing resistance 0.4				/A-NHI-10)-024 &025	5				Va			
Load Factors EV EH ES LS Resistance Factors	Projec	t: Opitz Bl	ve		-		WRA#:	032023.	000	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Str. No	. Walls 1	& 3 at Al	out.C			_				Check:	scb 01/0	3/2022
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											- - -	ļ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load F	actors		EV	EH	ES	LS		Resista	nce Facto	ors		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strengt	h I (maximı	um)	1.35	1.50	1.50	1.75		Sliding o	f MSE wal	l on found	dation soil	1.C
Calculation of β_{eq} and h $L = 21.0 \text{ ft.} \qquad H = 30.0 \text{ ft.} \qquad x = \text{ ft.} \qquad z = \text{ ft.}$ Case Description $\beta_{eq} = 0 \qquad \Delta h = z \qquad L_{T} = 0$ $2 x < L \beta_{eq} = 10^{-1}(z/2H) \qquad \Delta h = Lz/x \qquad L_{T} = L$ $3 L < x \ge H \beta_{eq} = 10^{-1}(z/2H) \qquad \Delta h = Lz/x \qquad L_{T} = L$ $4 x > 2H \beta_{eq} = 10^{-1}(z/2H) \qquad \Delta h = Lz/x \qquad L_{T} = L$ $5 \text{Infinite} \beta_{eq} = \frac{1}{\beta_{eq}} = \frac{1}{\beta_{eq}$	Strengt	h I (minimւ	ım)	1.00	0.90	0.75	0.00	- - - -	Bearing ı	esistance	= = = =		0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Service	e I		1.00	1.00	1.00	1.00		Tensile r	esistance	(for steel	strips)	0.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calcul	ation of 0	and h			- - - - - - - - - - - - - - - - - - -		0			= = = = = =		
Case Description $\beta_{eq} = \Delta h = L_T = L_R = L_T = L_T = L_R = L_T = L_T = L_R = L_T = L_R = L_T = L_T = L_R = L_T = L_T = L_R = L_T = L_T = L_T = L_R = L_T = L_$					20.0	Cı		: :	C1		= 	CT.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			π.			π.	X =	A b	π.			ăi	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					β _{eq}	A /		Δ11			L _R =L-L ₁	Г 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(z/2H)		$\Delta n = z$			$L_{T}=X$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3					=				ē			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	x > 2H	$oldsymbol{eta}_{eq}$ = tan	'(z/x)		$\Delta h = L$	Z/X		$L_{T}=L$	0		9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Infinite	$\beta_{eq} = \beta_{inf}$	inite	0.00	- 		0.00	L _T =L				
Coulomb Active Earth Pressure Coefficient for Retained fill $K_{A} = \frac{\sin^2(\theta + \phi')}{\sin^2\theta \sin(\theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^2} \qquad \begin{array}{c} \text{Note:} \phi' > \beta \phi f' = 34.0 \text{ degre} \\ \beta = 0.00 \text{ degre} \\ \delta = \beta \qquad \delta = 0.00 \text{ degre} \\ \delta = \beta \qquad \delta = 0.0 \text{ degre} \\ \delta$	5	<=Currer	nt Case	$oldsymbol{eta}_{eq}$ =	0.00	degree	Δ h =	0.00	ft.		21.00		
$K_{A} = \frac{\sin^{2}(\theta + \phi')}{\sin^{2}\theta \sin(\theta - \delta)} \begin{bmatrix} 1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}} \end{bmatrix}^{2}$ $K_{A} = \frac{\sin^{2}(\theta + \phi')}{\sin^{2}\theta \sin(\theta - \delta)} \begin{bmatrix} 1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}} \end{bmatrix}^{2}$ $K_{A} = 0.3127$ $K_{A} = 1$ $K_{A} = 0.8873$ $K_{A} = 1$ $K_{A} = 0.283$		β_{eq} =			h= H +	Δ h	h =	30.00	ft.				
$T_{1} = 0.3127 \qquad T_{2} = 1 \qquad \Gamma = [1 + \text{sqrt}(T_{1}/T_{2})]^{2} \qquad \Gamma = 2.4311$ $T_{t} = 0.6873 \qquad T_{b} = 1 \qquad K_{A} = T_{t}/(T_{b} * \Gamma) \qquad K_{af} = 0.283$ Rankine Earth Pressure Coefficients $ \text{Equation 5.12 from FHWA-IF-03-017} $ $K_{A} = \cos \beta \left[\frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \phi'}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \phi'}} \right] \qquad \frac{(\text{for comparison purposes})}{K_{A} = T_{\cos}(T_{\cos} - T_{sq})/(T_{\cos} + T_{sq})} $ $K_{A} = 0.283$	\mathbf{K}_{A}	= ;		72							β =	0.00	
$T_{1} = 0.3127 \qquad T_{2} = 1 \qquad \Gamma = [1 + \text{sqrt}(T_{1}/T_{2})]^{2} \qquad \Gamma = 2.4311$ $T_{t} = 0.6873 \qquad T_{b} = 1 \qquad K_{A} = T_{t}/(T_{b} * \Gamma) \qquad K_{af} = 0.283$ Rankine Earth Pressure Coefficients $ \text{Equation 5.12 from FHWA-IF-03-017} $ $K_{A} = \cos \beta \left[\frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \phi'}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \phi'}} \right] \qquad \frac{(\text{for comparison purposes})}{K_{A} = T_{\cos}(T_{\cos} - T_{sq})/(T_{\cos} + T_{sq})} $ $K_{A} = 0.283$		sin 2θ	sin (θ-	-8)1+	sin(φ	+ δ) sir	$1(\phi'-\beta)$	$\theta = 90 + \alpha$		α	θ =	90.0	degree
$T_{t} = 0.6873 \qquad T_{b} = 1 \qquad K_{A} = T_{t} / (T_{b} * \Gamma) \qquad K_{af} = 0.283$ $Rankine Earth Pressure Coefficients \qquad Equation 5.12 \ from FHWA-IF-03-017$ $K_{A} = \cos \beta \left[\frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \phi'}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \phi'}} \right] \qquad (for \ comparison \ purposes)$ $T_{sq} = 0.5592 \qquad T_{cos} = K_{A} = T_{cos} (T_{cons} - T_{sq}) / (T_{cos} + T_{sq})$ $K_{A} = 0.283$		DIII 0	om (o		$\sqrt{\sin(\theta)}$	$-\delta$) sin	$n(\theta + \beta)$].	$\delta = \beta$				degree
$T_{t} = 0.6873 \qquad T_{b} = 1 \qquad K_{A} = T_{t} / (T_{b} * \Gamma) \qquad K_{af} = 0.283$ $Rankine Earth Pressure Coefficients \qquad Equation 5.12 \ from FHWA-IF-03-017$ $K_{A} = \cos \beta \left[\frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \phi'}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \phi'}} \right] \qquad (for \ comparison \ purposes)$ $T_{sq} = 0.5592 \qquad T_{cos} = K_{A} = T_{cos} (T_{cons} - T_{sq}) / (T_{cos} + T_{sq})$ $K_{A} = 0.283$	T .	− N 3127	-	T	1	-	Γ – [1 ₊	sart(T./	T -) 1 ²	Г=	2 //211		
Rankine Earth Pressure Coefficients Equation 5.12 from FHWA-IF-03-017 $K_{A} = \cos\beta \left[\frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi'}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi'}} \right] \frac{(\textit{for comparison purposes})}{T_{\text{sq}} = 0.5592} \frac{T_{\text{cos}} = \frac{1}{10000000000000000000000000000000000$			į	:		: :				<u></u>			
$K_{A} = \cos\beta \begin{bmatrix} \cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi'} \\ \cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi'} \end{bmatrix} $ (for comparison purposes) $T_{sq} = 0.5592 \qquad T_{cos} = K_{A} = T_{cos}(T_{cons} - T_{sq})/(T_{cos} + T_{sq})$ $K_{A} = 0.283$	/ _t	= 0.0073		/ b=	l		$\kappa_A = r_t$	/(/ _b	.) : :	∧ _{af} =	0.203		
$\mathbf{K}_{\mathrm{A}} = \cos\beta \begin{bmatrix} \cos\beta - \sqrt{\cos^2\beta - \cos^2\phi'} \\ \cos\beta + \sqrt{\cos^2\beta - \cos^2\phi'} \end{bmatrix} $ (for comparison purposes) $T_{\mathrm{sq}} = 0.5592 \qquad T_{\mathrm{cos}} = K_{\mathrm{A}} = T_{\mathrm{cos}}(T_{\mathrm{cons}} - T_{\mathrm{sq}})/(T_{\mathrm{cos}} + T_{\mathrm{sq}})$ $K_{\mathrm{A}} = 0.283$	Dankir	o Forth D	roccuro	`aofficiar	atc	- - - - - -		Equatio	n E 10 fr	om EUW	Λ IE Ω2 (17	
$K_{A} = \cos \beta \left[\frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \phi'}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \phi'}} \right] \qquad T_{sq} = 0.5592 \qquad T_{cos} = \frac{K_{A} = T_{cos} (T_{cons} - T_{sq}) / (T_{cos} + T_{sq})}{K_{A} = 0.283}$	NailKii	ic Lai III P	cooule (OCHICIEI	113	: 0		LyuaiiU					
$K_A = 0.283$			cos	B-Vco	$s^2 \beta - c$	$os^2 \phi'$]	: :				·····	
$K_A = 0.283$	K	$A = \cos \beta$	3	0 /	2 0	2 1		: 				·····	``````````````````````````````````````
			cos	$3 + \sqrt{cc}$	os B - c	os o'	J	: :	Λ _A =	·		· · · · · · · · · · · · · · · · · · ·	<i>)</i>
NOIE:	Net:		-	-		-		:	:	∧ _A =	0.283	:	
	ілоте :			9		- - - -				9	- - - - - -		
				9		- - 		: 0		0	: :	0	
			: [: }		- - 0	-	: 0	: 	: 	: [: }	
			<u>-</u>	9		- - 		: 0		ē	- - 		
			-	- - - - - - - - - -		= - - - - - - - - - -	-			-	= - - - - - - - - - -	- - - - - - - - - - -	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing Ref:FHWA-NHI-10-024 &025

WRA#: 032023.000

Version: 2016-06

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

Project: Opitz Blve Design: skk 01/03/2021

	_	Opitz Blve				WKA#:	032023.0	UUU		-	skk 01/	
		Walls 1 & 3 at A	but.C			-	-			Check:	scb 01/0	03/2022
	Loads ar	nd Moments:								- - - -	: : :	<u> </u>
	Data for	Calculations:					Q _{T-t}					
	L =	21.00 ft.					Q_{t-t}		P _H			
	H =	30.00 ft.										
	h =	30.00 ft.			V	4	V _R					
	L _T =	0.00 ft.		1								
	L _R =	21.00 ft.			<u> </u>	L _R	L _T	→	Q _{T-t}	Q _{T-t}		
	K _{af} =	0.283				- 1		h		-	F _T	
	γ_{r} =	105.0 pcf		Н		1	V ₁			\		
	$\gamma_{f}=$	105.0 pcf							h/2	\ \\	,	
	γ_{t} =	105.0 pcf		<u> </u>				\downarrow	,,,	h/	3	
	β=	0.00 deg.			25,750	$\mu \sum \hat{\mathbf{V}}$						
	q_{Dtop} =	0 psf			-		L	\rightarrow				
	<i>q</i> _{D-b} =	0 psf										
	q _{T-top} =	250 psf										
	q _{T-beh} =	250 psf	р _н =	100	lb/LF		rounding	force	2	length	2	2
	Un-facto	red Loads: Hor	izontal, V	ertical &	Mome	nt about	Point A				Arm	М
									(kips/LF)	12	(ft.)	(ft. kips)
1	V ₁ = γ _r H	'L	Reinforced	l Mass		EV	1	V ₁	66.15	L/2=	10.50	694.58
2	$V_{T} = (1/2)$	2) γ _t (h-H) L _T	Top Tringle	e Mass		EV	Ţ	<i>V</i> _T	0.00	2L _T /3=	0.00	0.00
3	$V_R = \gamma_t$ (h-H) L _R	Top Rectai	ngle Mass		EV	Ţ	V_{R}	0.00	$L_{T}+L_{R}/2=$	10.50	0.00
										-		
4	$F_{\text{TV}} = (1/2)$	$) \gamma_f h^2 K_{af} \sin \beta$	Earth Pres	sure		EH	Ţ	F _{TV}	0.00	L=	21.00	0.00
		F _T = 13.37								- - - - - -		
5	$F_{TH} = (1/2)$	$) \gamma_f h^2 K_{af} \cos \beta$				EH	←	F _{TH}	13.37	h/3=	10.00	133.70
										- - - - - -		
6	$Q_{D \text{ top-V}} =$	$(q_{D \text{ top}}) L$	Surch.Dea	d:Top		ES-t	1	Q _{Dtop-V}	0.00	L/2=	10.50	0.00
7	$Q_{DV}=(q_{I}$	$_{\rm O}$) $h K_{\rm af}$ sin $β$	Surch.Dea	d:Behind		ES-b	Ţ	Q_{DbV}	0.00	L=	21.00	0.00
						-						
8	$Q_{DH}=(q_{I}$	_D) hK_{af} cos $β$	Surch.Dea	d:Behind		ES-b	←	Q_{DbH}	0.00	h/2=	15.00	0.00
9	$Q_{\text{T top-V}}=$	(q _⊤) L	Surch.Traf	fic:Top		LS-t	1	Q _{T top-V}	5.25	L/2=	10.50	55.13
10	$Q_{TV} = (q_{T})$	$_{-b}$) hK_{af} sin β	Surch.Traf	fic:Behind		LS-b	Ţ	Q_{TbV}	0.00	L =	21.00	0.00
											Y-111111111111111111111111111111111111	
11	Q _{TH} = (q _{T-b})	$hK_{af}\cos \beta + P_{BR}$	Surch.trafi	fic:Behind		LS-b	←	Q_{TbH}	2.22	h/2=	15.00	33.30
	2	3 4	1 5	4		7 9	3 9	10		12	13	14

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

WRA#: 032023.000 Project: Opitz Blve Design: skk 01/03/2021 Str. No. Walls 1 & 3 at Abut.C Check: scb 01/03/2022 Static Sliding 4 5 2 3 Strength I(max) Strength I(Min) Critical Horizontal Driving Forces **ASD** Max.Load Factor Min.Load Factor Crit.Load Factor Horizontal Forces Factor Load Load Factor Load Factor Factor Load 5 Earth Pressure 13.37 EΗ 1.0 13.37 1.50 20.06 0.90 1.50 20.06 8 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 0.00 0.00 1.50 0.00 11 Surch.traffic:Behind 2.22 LS-b 1.0 2.22 1.75 3.89 0.00 0.00 1.75 3.89 12.03 ---Total Horizontal Σ H driving 15.59 23.94 23.94 Vertical Loads 1 Reinforced Mass 1.0 66.15 ΕV 66.15 1.35 89.30 1.00 66.15 1.00 66.15 2 Top Tringle Mass 0.00 ΕV 1.0 0.00 1.35 0.00 1.00 0.00 1.00 0.00 3 Top Rectangle Mass ↓ 0.00 EV 1.0 0.00 0.00 1.00 0.00 1.00 0.00 4 Earth Pressure EΗ 1.0 0.00 1.50 0.00 0.90 0.00 0.00 0.00 1.50 1.0 6 Surch.Dead:Top ES-t 0.00 0.00 0.00 1.00 0.00 0.00 1.35 1.00 7 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 1.50 0.00 0.75 0.00 1.50 0.00 9 Surch.Traffic:Top LS-t 0.0 0.00 9.19 0.00 0.00 5.25 1.75 0.00 0.00 10 Surch.Traffic:Behind ↓ 0.00 LS-b 1.0 0.00 1.75 0.00 0.00 0.00 0.00 1.75 ΣV Total Vertical 66.15 98.49 66.15 66.15 ASD Resisting Horizontal Loads for 30.00 Max Min Crit. Φ_{crit}= 38.19 38.19 1 Reinforced Mass 51.56 38.19 2 Top Tringle Mass 0.00 0.00 0.00 0.00 0.00 3 Top Rectangle Mass ↓ 0.00 0.00 0.00 4 Earth Pressure 0.00 0.00 0.00 0.00 6 Surch.Dead:Top \downarrow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 Surch.Dead:Behind \downarrow 9 Surch.Traffic:Top 0.00 5.30 0.00 0.00 10 Surch.Traffic:Behind ↓ 0.00 0.00 0.00 0.00 Cohesion $C_{H} = c_{fd} L$ 0.00 0.00 ΣV_{resist} 38.19 56.86 38.19 38.19 Results 2.450 **ASD** FS_{SL}= Crit ASD Load F Max Min LRFD CDR= 1.595 ΕV 1.35 1.00 1.00 1.0 For geogrid reinforced MSE, the sliding friction Note: EΗ 1.50 0.90 1.50 1.0 angle may be taken as minimum of ϕ_{fd} and ES-t 1.35 1.00 1.00 1.0 two thirds of reinforced soil friction angle, (2/3) ϕ_r ES-b 1.50 0.75 1.50 1.0 $\Phi_{fd} = 30.00$ Sliding Φ_r = LS-t 34 1.75 0.00 0.00 0.0 $2/3 \, \Phi_r = 22.67$ 22.67 LS-b **φ**_{crit}= 1.75 0.00 1.75 1.0

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Project: Opitz Bl		A-INTII- IU	02.002		WRA#:	U33U33	000	•	Design:		SE-W 10/3	
Str. No. Walls 1				•	$VVICA\pi$.					skk 01/03/2021 scb 01/03/2022		
	& 3 at AD	ut.C				0	: :	2	ETTECK.	SCD 0170	372022	
Eccentricity:	0		0	5		2		3		4		
5	9		8	V C D	IDED							
				ASD	LRFD	Max.Load Factor	Factored Load	Min.Load Factor	Factored Load	Crit.Load Factor	Factored Load	
Moments: Counte	r-Clockwis			Un-factor			Lodd			Tactor		
5 Earth Pressure	←	133.70		1.0	133.70		200.55	0.90	120.33	1.50	200.55	
8 Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
11 Surch.traffic:Behind	ī	33.30		1.0	33.30	1.75	58.28	0.00	0.00	1.75	58.28	
Total: Counter-Clo	ckwise Mo	oments	ΣM_{-}		167.00		258.83		120.33		258.83	
				: :					-			
Moments: Clockw	ise	14								<u> </u>		
1 Reinforced Mass	\downarrow	694.58	EV	1.0	694.58	1.35	937.68	1.00	694.58	1.00	694.58	
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00	
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
9 Surch.Traffic:Top	\downarrow	55.13	LS-t	0.0	0.00	1.75	96.48	0.00	0.00	0.00	0.00	
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00	
Total: Clockwise N	1oments		ΣM_+		694.58		1034.16		694.58		694.58	
5	9			-	8							
Vertical Load		11										
1 Reinforced Mass	\downarrow	66.15	EV	1.0	66.15	1.35	89.30	1.00	66.15	1.00	66.15	
2 Top Tringle Mass	↓	0.00		1.0	0.00	1.35	0.00	1.00	0.00		0.00	
3 Top Rectangle Mass	ļ	0.00		1.0	0.00		0.00		0.00	å	0.00	
4 Earth Pressure	V	0.00		1.0	0.00		0.00		0.00	÷	0.00	
6 Surch.Dead:Top	∨	0.00		1.0	0.00		0.00		0.00	÷	0.00	
7 Surch.Dead:Behind	·	0.00		1.0	0.00		0.00	0.75	0.00	1.50	0.00	
9 Surch.Traffic:Top	·	5.25		0.0	0.00		0.00	0.73	0.00	0.00	0.00	
	·	0.00		1.0	0.00	1.75	0.00		0.00	·	0.00	
10 Surch.Traffic:Behind	r	0.00		ē			0.00	0.00		1.70	ł	
Total Vertical Load		intΛ.ν	Σ V		66.15		98.49 7.07		66.15		66.15	
	t from po city: e				7.98		7.87		8.68		6.59	
Eccentri	City: e	– L12-y	(11.)							0.11	ACD	
D !:				<u> </u>			Load F	Max	Min	Crit	ASD	
Results:	- - - - -						EV	1.35	1.00	1.00	1.0	
	(e=L/2-y					EH	1.50	0.90	1.50	1.0	
ASD		2.52 ft.	0.120	Ok			ES-t	1.35	1.00	1.00	1.0	
LRFD Max		2.63 ft.	0.125	Ok			ES-b	1.50	0.75	1.50	1.0	
LRFD Min		1.82 ft.	0.087	Ok			LS-t	1.75	0.00	0.00	0.0	
LRFD Crit.		3.91 ft.	0.186	Ok	-		LS-b	1.75	0.00	1.75	1.0	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Project: Opitz Bl	ve				WRA#:	032023.	000		Design:	skk 01/	03/2021
Str. No. Walls 1	& 3 at Ab	ut.C							Check:	scb 01/0	3/2022
Critical Bearing	:			5		2		3	-	4	
5	9	14	8	Eccentr	i Eccentri	city: e	= L/2-y	Меує	erhof str.	$\sigma_{V} = \Sigma V$	/(L -2e)
				ASD	LRFD	Max.Load	Factored	Min.Load	Factored	Crit.Load	Factored
Moments: Counte	r-Clockwis	e		Un-factore	ed	Factor	Load	Factor	Load	Factor	Load
5 Earth Pressure	←	133.70	EH	1.0	133.70	1.50	200.55	0.90	120.33	1.50	200.55
8 Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
11 Surch.traffic:Behind	←	33.30	LS-b	1.0	33.30	1.75	58.28	0.00	0.00	1.75	58.28
Total: Counter-Clo	ckwise Mo	ments	Σ M .		167.00		258.83		120.33		258.83
5	9	14	8								
Moments: Clockw	ise			-							
1 Reinforced Mass	\downarrow	694.58	EV	1.0	694.58	1.35	937.68	1.00	694.58	1.35	937.68
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00		0.00	1.35	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00		0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	55.13	LS-t	1.0	55.13	1.75	96.48	0.00	0.00	1.75	96.48
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total: Clockwise N	1oments		ΣM_+		749.71		1034.16		694.58		1034.16
5	9	11	8		-						
Vertical Load											
1 Reinforced Mass	\downarrow	66.15	EV	1.0	66.15	1.35	89.30	1.00	66.15	1.35	89.30
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	5.25	LS-t	1.0	5.25	1.75	9.19	0.00	0.00	1.75	9.19
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.00	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total Vertical Load	ds		ΣV		71.40		98.49		66.15		98.49
Resultan	t from po	int A, y	(ft.)		8.16		7.87		8.68		7.87
									1.5	1.75	
Results:	ASD	LRFD	LRFD	LRFD			Load F	Max	Min	Crit	ASD
	Ser.	Max	Min	Crit.			EV	1.35	1.00	1.35	1.0
ΣV (kips)	71.40	98.49	66.15	98.49			EH	1.50	0.90	1.50	1.0
(ft)	8.16	7.87	8.68	7.87			ES-t	1.35	1.00	1.50	1.0
e = L/2-y (ft)	2.34	2.63	1.82	2.63			ES-b	1.50	0.75	1.50	1.0
e/L	0.111	0.125	0.087	0.125			LS-t	1.75	0.00	1.75	1.0
σ_V = ΣV /(L -2e) (ksf)	4.374		3.810	6.256			LS-b	1.75	0.00	1.75	1.0
							1.50	Chosen to	match MS	E-W approa	ach

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Validation:

Coding: skk 10/27/2016

scb by MSE-W 10/31

Project: Opitz Blve WRA#: 032023.000 Design: skk 01/03/2021 Str. No. Walls 1 & 3 at Abut.C Check: scb 01/03/2022 Critical Bearing (ctd): Foundation Length $L_w =$ 21.0 ft. Mayerhof Bearing Capacity/Nominal Resistance, q_{ult} = 16.64 ksf Values corresponds to un-factored loads & capacities **ASD** 2.34 ft. Eccentricity Vertical Loads, un-factored ΣV 66.15 kips/LF Required Allowable Bearing Capacity 4.05 ksf $\sigma_V =$ Ultimate Bearing Capacity 16.64 ksf q_{ult} = Factor of Safety against Bearing FS bearing= 4.106 **LRFD** Values corresponds to maximum load factors Crit. Serv. Max Min Eccentricity 2.34 2.63 1.82 2.63 ΣV Vertical Loads, un-factored 71.40 98.49 66.15 98.49 Required Factored Bearing Stress 4.37 6.26 3.81 6.26 **σ**_V = Nominal Bearing Capacity 16.64 16.64 16.64 q_{ult} = 16.64 Resistance factor for Bearing: 0.5 0.65 0.65 0.65 Φ_b= Factored Bearing Resistance 8.32 10.82 10.82 10.82 2.84 CDR= 1.90 1.73 1.73 Bearing Resistance: CDR min= 1.73 Summary: LRFD CDR ASD FS Target Calc. Calc. Target Sliding 1.00 1.60 ok Sliding 2.00 2.45 Bearing 1.00 1.73 Bearing 3.00 4.11 Eccentricity Max **ASD LRFD** e/L 0.250 0.120 0.186 ok Bearing Resistance / Capacity Required Factored Bearing Resistance: 6.26 ksf 4.05 ksf Required Allowable Bearing Capacity: Notes: For excentricity and sliding

MSE Wall - External Stability Check Static Sliding, Eccentricity & Bearing Ref:FHWA-NHI-10-024 &025 Project: Opitz Blve Str. No.: Walls 1 & 3 at Abut. C WSE Wall - External Stability Check Version: 2016-06 Coding: skk 10/27/2016 Validation: scb by MSE-W 10/31 Design: skk 01/03/2021 Check: scb 01/03/2022

EVALUATION OF NOMINAL BEARING RESISTANCE

Soil Parameters	16.
Cohesion c = 0.0 psf	Foundath Subgr. Soil Unit Wt. $\gamma_{\rm fs}$ 125.0 pcf
Friction Ang. $\phi_f = 30.0$ degree	Surcharge Soil Unit Wt. $\gamma_{\rm sur}$ 120.0 pcf
Soils above footing bearing are as competen	t as subgrade soils? Yes
Foundation Dimensions	
Footing Width B= 21.00 ft.	Footing Depth $D_f = \frac{2.00}{ft}$
Footing Length L= 36.00 ft.	G.Water Depth $D_w = 50.00$ ft
Foundation Loads:	
Unfactored Vert. Load V= 66.2 kips	Load Angle θ 0.0 deg
Unfactored Horz.Load H= 15.6 kips	Moment:
Eccentricity: $e_b = 2.5$ ft.	(<5.3) ok e_{L} (ft)= (<9.0) ok
CALCULATION OF BEARING NOMINAL RESISTAN	ICE:
Bearing Capacity Factors :	M (T 1900) - 44-50 - 150
$N_c = (N_q - 1) \cot \phi$ $N_{\gamma} = 2 (N_q + 1) \tan \phi$	$N_q = e^{i\pi \tan \varphi} \tan^2(45^\circ + \varphi/2)$
$N_c = 30.14$ $N_{\gamma} = 22.40$	$N_q = 18.40$
Effective Footing Dimensions:	(Area reduction for assumed eccentricity)
B' =B-2 e_b = 16.0 ft	$L'=L-2e_L = 36.0$ ft
Footing Shape Correction Factors:	
For $\phi = 0$ $S_c = 1 + (B'/5L')$	$S_{\gamma} = 1.0$ $S_{q} = 1$
For $\phi > 0$ $S_c = 1 + (B'/L') (N_q/N_c)$	$S_{\gamma} = 1 - 0.4 \text{ (B'/L')}$ $S_{q} = 1 + \text{ (B'/L') tan } \phi$
$S_{c} = 0.881$	$S_{\gamma} = 0.823$ $S_{q} = 1.256$
Groundwater Correction Factors	
$C_{wq} = 1.000$	$C_{W\gamma} = 1.000$
Depth Correction Factor:	
Competent surcharge soils: Yes	$D_f/B= 0.13$ $d_q= 1.00$
Load Inclination Factors: 10	000
i _c = 1.000 i _q =	0.692 $i_{\gamma} = 0.529$
Nominal Bearing Resistance:	
$q_n = c (N_c S_c i_c) + \gamma_{sur} D_f (N_q S_q d_q i_q) C_{wq} + 0.5$	$\gamma_{fs} B (N_{\gamma} S_{\gamma} i_{\gamma}) C_{w\gamma}$ ASD FOS 2.0
C term 0.00 q term 3.84	B term 12.80 LRFD Φq 0.65

Allowable q 8.32 ksf Factored q 10.82 ksf

NOTES:

 $q_n = 16.64 \text{ ksf}$

Calc based on assumed foundation length and water table depth.

MSE Wall Calculations – Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.24+50 (19' Wall
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

Elastic Settlement for Embankment
Hough Method Settlement Estimations

Calc jy Chk: sk

Sheet 2 of 2

Version: V.2.00

Project: Opitz Blvd Express Lane

Location: Abutment C

Subject:

Subject: T-Ramp Loading at the edge.

Stress Destribution for Two Areas				Formulas:	B. B.	
	Area 1	Area 2	Area 3			$\Delta\sigma_z = \frac{q_o}{\pi} \left[\left(\frac{B_1 + B_2}{B_2} \right) (\alpha_1 + \alpha_2) - \frac{B_1}{B_2} (\alpha_2) \right]$
Multiplier	1	1	0			$= \begin{bmatrix} a_1 & b_2 & b_1 & b_2 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & b_2 \end{bmatrix}$
Height of Embankment	26	26	0		$q_o = \gamma t$.	
Soil Unit Weight	105	105	0			
Rectangular Loading Width B_1	18	18	0			$p_0 + \Delta p$
Triangular Loading Width B_2	0	0	0		a ₁	$\Delta H = H \left(\frac{1}{C'}\right) \log_{10} \frac{p_o + \Delta p}{p_o}$
FHWA Recommended factor for final set	tlement:	k _{FHWA}	0.5	1		(C) Po
Default Min. Value for B ₂ = 1E-10						

Settle	ment Ca	lculatio	ns:																
	La	ayer Dat	ta		Angles (radians)						Influ	ence Fa	ctors	$q_0^{(a)}$	$q_0^{(b)}$	$q_0^{(c)}$			
Layer	Middle	Layer	Overbr.	Bear.	Area	(a)	Area	ı (b)	Area	a (c)	Area(a)	Area (b)	Area (c)	2730	2730	0	Total	Settle	ments
No.	Depth	Thick.	Press.	Factor	B ₁	B ₂	B ₁	B ₂	B ₁	B ₂				$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	Δр	Per	Cumu.
	Z _{mid}	h _i	\mathbf{p}_0	C'	18.0	0.0	18.0	0.0	0.0	0.0				∆p ^(a)	∆p ^(b)	∆p ^(c)		Layer	
	(ft)	(ft)	(psf)		$\alpha_1^{(a)}$	$\alpha_2^{(a)}$	$\alpha_1^{(b)}$	$\alpha_2^{(b)}$	α ₁ ^(c)	$\alpha_2^{(c)}$	l _z ^(a)	l _z ^(b)	l _z ^(c)	(psf)	(psf)	(psf)	(psf)	(inch)	(inch)
1	1.5	3.0	172.5	294	0.000	1.488	0.000	1.488	0.000	0.000	0.474	0.474	0.000	1292.7	1292.7	0.0	2585.3	0.15	0.15
2	4.8	3.5	555.0	85	0.000	1.313	0.000	1.313	0.000	0.000	0.418	0.418	0.000	1140.9	1140.9	0.0	2281.7	0.35	0.50
3	15.8	18.5	1921.3		0.000	0.852	0.000	0.852	0.000	0.000	0.271	0.271	0.000	740.4	740.4	0.0	1480.8	0.59	1.08
4	37.5	25.0			0.000	0.448	0.000	0.448	0.000	0.000	0.142	0.142	0.000	388.8	388.8	0.0	777.5	0.05	1.13
5	75.0	50.0	5895.5	697	0.000	0.236	0.000	0.236	0.000	0.000	0.075	0.075	0.000	204.8	204.8	0.0	409.5	0.03	1.16
																	ΔH=	1.16	inches
			Final se	ttlemen	t	(k _{FHWA} *	ΔΗ)	1.16	x 0.50	=	0.58	inches	(center a	and mid	dle of inf	inite stri	p)		

Elastic Stress Distribution

Ref: Das, Braja M, (2001), Principles of Geotechnical Engineering,

5th Edition, Brooks/Cole - Thomson Learning, Inc. Pacific Grove, California

9.5 Vertical Stress Due to Embankment Loading

Figure 9.10 shows the cross section of an embankment of height H. For this two-dimensional loading condition the vertical stress increase may be expressed as

Figure 9.10 Embankment loading

$$\Delta\sigma_z = \frac{q_o}{\pi} \left[\left(\frac{B_1 + B_2}{B_2} \right) (\alpha_1 + \alpha_2) - \frac{B_1}{B_2} (\alpha_2) \right]$$
 (9.19)

where $q_o = \gamma H$

 γ = unit weight of the embankment soil

 \dot{H} = height of the embankment

$$\alpha_1(\text{radians}) = \tan^{-1}\left(\frac{B_1 + B_2}{z}\right) - \tan^{-1}\left(\frac{B_1}{z}\right)$$
 (9.20)

$$\alpha_2 = \tan^{-1} \left(\frac{B_1}{z} \right) \tag{9.21}$$

Settlement

$$\Delta H = H\left(\frac{1}{C'}\right) log_{10} \frac{p_o + \Delta p}{p_o}$$

MSE Wall Calculations – Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

Project: Opitz Blvd

Virginia WRA No.

Sheet 1 of 2 445893-000

WALLS Structure:

Version 01.00 sk 12/14/2021 Calc by:

T-Ramp Back-to-Back Walls, Wall 1 & Wall 3.

Calc by: skk 12/14/2021 Chk by:

Wall Data

Friction Angle (Reinforced fill) ϕ	34	deg	Reinforcement Lengths	0.7 H
Total Width of the Ramp W_b	36.3	ft. Minimum strap Length		<i>8.0</i> ft.
Depth below subgrade	2.0	ft.		
Wall height above Parapet	3.0	ft.	Minimum distance for Back to Ba	ck Walls
Wall height included in Clear Height	1.0	ft.	Min for BBMSE , D_{min}	2.0 ft
Amount to be added to clear heigh h_a	4.0	ft.	$D^* = H_1 \tan(45^\circ - \phi/2)$	

	Drawing Re	eadings	Exposed He	eight hc	Effective He	eights	Sorted		
Wall	From Draw	ings (h _o)	$h_e = h_c +$	h _a	$h_{eff} = h_o$	+ h _a	Taller Wall	Shorter Wall	
Station	West Wall	East Wall	West Wall	East Wall	West Wall	East Wall	H ₁	H_2	
(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	
27+00	22.0	26.0	24.0	28.0	26.0	30.0	30.0	26.0	
26+50	20.0	24.0	22.0	26.0	24.0	28.0	28.0	24.0	
26+00	20.0	23.0	22.0	25.0	24.0	27.0	27.0	24.0	
25+50	18.0	22.0	20.0	24.0	22.0	26.0	26.0	22.0	
25+00	17.0	19.0	19.0	21.0	21.0	23.0	23.0	21.0	
24+50	15.0	15.0	17.0	17.0	19.0	19.0	19.0	19.0	
24+00	13.0	13.0	15.0	15.0	17.0	17.0	17.0	17.0	
23+50	11.0	11.0	13.0	13.0	15.0	15.0	15.0	15.0	
23+00	9.0	9.0	11.0	11.0	13.0	13.0	13.0	13.0	
22+50	6.0	6.0	8.0	8.0	10.0	10.0	10.0	10.0	

Wall	L ₁	L ₂	D		L _R	Conditions for	Back to Back	Design Stra	p Length
Station	0.7H	0.7H	$(W_b-L_1-L_2)$	D*	0.3 H ₂	$W_b/H_1 > 1.1$	D < D*	L _{1D}	L _{2D}
(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)			(ft.)	(ft.)
27+00	21.0	18.2	-2.9	16.0	7.8	1.2	BBMSE	23.5	20.7
26+50	19.6	16.8	-0.1	14.9	7.2	1.3	BBMSE	23.2	20.4
26+00	18.9	16.8	0.6	14.4	7.2	1.3	BBMSE	22.8	20.7
25+50	18.2	15.4	2.7	13.8	6.6	1.4	MSE	18.2	15.4
25+00	16.1	14.7	5.5	12.2	6.3	1.6	MSE	16.1	14.7
24+50	13.3	13.3	9.7	10.1	5.7	1.9	MSE	13.3	13.3
24+00	11.9	11.9	12.5	9.0	5.1	2.1	MSE	11.9	11.9
23+50	10.5	10.5	15.3	8.0	4.5	2.4	MSE	10.5	10.5
23+00	9.1	9.1	18.1	6.9	3.9	2.8	MSE	9.1	9.1
22+50	8.0	8.0	20.3	5.3	3.0	3.6	MSE	8.0	8.0

Project: Opitz Blvd

WRA No.

Sheet 2 of 2 445893-000

Structure:

T-Ramp Back-to-Back Walls, Wall 1 & Wall 3.

Calc by:

skk 12/14/2021

Virginia

Chk by:

Notes from the Reference:

FHWA NHI-10-024 MSE Walls and RSS - Vol I

Case I

(i) D > 0 (must).

(ii) D may be greater than D_{min} and/or D^*

Case II

For Case II geometries with overlaps (L_R) greater than 0.3H₂, the following guidelines should be used:

- L₁/H₁ ≥ 0.6 where L₁ and H₁ is the length of the reinforcement and height, respectively, of the taller wall.
- L₂/H₂ ≥ 0.6 where L₂ and H₂ is the length of the reinforcement and height, respectively of the shorter wall.
- W_b/H₁ ≥ 1.1 where W_b is the base width as shown in Figure 6-9 and H₁ is the height of the taller wall.

MSE Wall Calculations – Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 - External Stability and Bearing Resistance @ Sta.24+50 (19' Wall
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

Sheet 1 **MSE Wall - External Stability Check** Version: 2016-06 Static Sliding, Eccentricity & Bearing Coding: skk 10/27/2016 Ref:FHWA-NHI-10-024 &025 Validation: scb by MSE-W 10/31 Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Wall ID Walls 1 & 3, Sta. 24+50 (h=19') Wall No.: Wall 1&3 Check: scb 12/20/2021 Assumptions/Notes: Front of the abutment is modeled as a triangular portion. Lateral loads behind the wall are assumed to be horizontal (per MSE-W assumption for slope < 45 deg.) Wall Configuration Backfill Slope **q**_{D-t} Broken Back Slope: Height z (ft.)= Fill (t) Length x (ft.)= Reinforced Fill at Н Infinite Backfill: Yes Soil (r) Back (f) Infinite Slope β_{inf} = Fall face assumed vertical Foundation 0.00 deg. Soil (fd) Δh Case β_{eq} 0.00 0.00 19.00 Wall Dimensions Exposed wall height $H_{\rm e} = 17.00 \, {\rm ft}.$ Table C.11..10.2.2.-1 Minimum Embedment Minimum Embedment = H/20Embedded Height 2.00 ft. *d* = 0.95 ok Total Wall Length 50.00 ft. <== (for bearing capacity calculations) Friction Angle Reinforced Backfill 34.0 degree Unit Wt. 105.0 pcf ф_г = Retained Fill (f) (above and behind reinf. zone) 34.0 degree 105.0 pcf ф =

 Foundation Soil:				ф fd =	30.0	degree			γ fd=	110.0	pcf	
 Cohesion:	C _{fd} =	0.0	psf		Mayerl	nof Beari	ng, $q_{ m ult}$ =	12.31	ksf			
 Top of wall Back	fill	Friction	Angle	φ t =	34.0	degree		Unit Wt.	$\gamma_t =$	105.0	pcf	
 Surcharge Loadi	ng											
 Traffic @ wall To	р	↓	q _{T-t} =	250	psf	Dead -to	р	Ţ	<i>q</i> _{D- t} =	0	psf	
 Traffic @ behind	wall	↓	q _{T-b} =	250	psf	Dead -B	ehind	ļ	<i>q</i> _{D-b} =	0	psf	
 Added horizonta	l Load	←	P _{BR-H} =	0	lb/LF							
 Design Height ar	nd Estima	ated Reir	nforceme	ent Lengt	h							
 Estimate	d Reinfo	rcement	Length:	L =	13.40	ft.		Check fo	or minimu	m L		
 Design Height of	the wall:	$H = H_e$	+ d	H =	19.00	ft.		L _{min} =	7.0 ft.	ok		
Ratio for Estima	ted Reinf	orcemer	nt Length	(> 0.7):	0.71	(L / H)	ok	L ≤ 2H	ok to us	se this sp	readshee	∍t
 Results Summm	ary											
 LRFD:				ASD:		Beari	ng Resis	tnace:				
 Direct Sliding	CDR=	1.486		$FS_{Sliding}$	2.303	Re	quired F	actored l	Bearing=	4.232	ksf	
 Bearing Resist.	CDR=	1.891		FS _{bearing}	4.743	R	equired	Service I	Bearing=	2.596	ksf	
 1.225	e/L =	0.204	Critical	e/L =	0.130		e/L =	0.130	e =	1.74	ft	
 								-			:	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

2016-06 Version:

Coding: skk 10/27/2016

scb by MSE-W 10/31 Validation:

WRA#: 032023.000 Project: Opitz Blve Design: skk 12/20/2021

Str. No.	Walls 1	& 3, Sta.	.24+50 (h	=19')						Check:	scb 12/	20/2021
			-			-						
Load Fa	actors		EV	EH	ES	LS		Resistar	nce Facto	rs		
Strength	ı I (maximı	ım)	1.35	1.50	1.50	1.75		Sliding of	f MSE wall	on found	lation soil	1.00
Strength	ո I (minimu	ım)	1.00	0.90	0.75	0.00		Bearing r	esistance			0.65
Service	<u>I</u>		1.00	1.00	1.00	1.00		Tensile r	esistance (for steel	strips)	0.75
Calcula	tion of β	_{eq} and <i>h</i>					0					
L=	13.4	ft.	H=	19.0	ft.	<i>X</i> =		ft.	Z =		ft.	
Case De	scription			$oldsymbol{eta}_{eq}$			Δh			$L_R = L - L_T$		
1	For x <z;< td=""><td></td><td></td><td></td><td>∆h = z</td><td></td><td></td><td>L_T=0</td><td></td><td></td><td></td><td></td></z;<>				∆ h = z			L _T =0				
2	x< L	$oldsymbol{eta}_{ ext{eq}}$ =tan	^I (z/2H)		$\Delta h = z$: : : :	$L_{T}=x$				
3	L <x< 2h<="" td=""><td>$oldsymbol{eta}_{ ext{eq}}$=tan</td><td>^I (z/2H)</td><td></td><td>$\Delta h = Lz$</td><td></td><td></td><td>L_T=L</td><td></td><td></td><td></td><td></td></x<>	$oldsymbol{eta}_{ ext{eq}}$ =tan	^I (z/2H)		$\Delta h = Lz$			L _T =L				
4	x > 2H	$oldsymbol{eta}_{\text{eq}}$ = tan			$\Delta h = Lz$			L _T =L				
5	Infinite	$oldsymbol{eta}_{eq}$ = $oldsymbol{eta}$ $_{inf}$	inite	0.00			0.00	L _T =L	0.00	13.40		
5	<=Currer	nt Case	$oldsymbol{eta}_{ ext{eq}}$ =	0.00	degree	Δ h =	0.00	ft.	0.00	13.40		
	$oldsymbol{eta}_{eq}$ =	=		h= H + .		h =	19.00	ft.				
		-										
	nb Active				t 	for Reta	ined fill		- - - - -			
Referer	nce: Eq. 3.	11.5.3-1	AASHTC)			9					
V			\sin^2	$(\theta + \phi')$				Note:	φ' > β	φf' =		degree

K -	si	$\sin^2(\theta + \phi')$	
K _A –	$\sin^2\theta\sin\left(\theta-\delta\right) \int_0^1$	$1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^{2}$	2

0.00 degree β =

 $\theta = 90 + \alpha$ 90.0 degree θ = $\delta = \beta$ δ = 0.0 degree

$$T_1$$
 = 0.3127
 T_2 = 1
 Γ = $[1 + \text{sqrt}(T_1/T_2)]^2$
 Γ = 2.4311

 T_t = 0.6873
 T_b = 1
 $K_A = T_t / (T_b * \Gamma)$
 K_{af} = 0.283

Rankine Earth Pressure Coefficients

Equation 5.12 from FHWA-IF-03-017

(for comparison purposes)

$$K_{A} = \cos\beta \left[\frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi'}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi'}} \right]$$

$T_{sq} =$	0.5592	-		cos =	
K _A =	$T_{\cos}(T_{\mathrm{c}})$	ons- $T_{ m so}$)/(T _{co}	s+T _{sq})	
=		- ^ ^	:		

 $K_{A} = 0.283$ Note:

	i i Ojcci. (Opitz bive					VVIXAT.	-032023.		-	Design.	3KK 12/	2072021
	Str. No. 1	Walls 1 & 3,	Sta.	24+50 (h=	19')						Check:	scb 12/	20/2021
	Loads ar	nd Momen	ıts:	<u> </u>									
	Data for	Calculation	ıS:					Q _{T-t}					
	L =	13.40 ft.						Q_{t-t}		P _H			
	H =	19.00 ft.						Qi-t					
	h =	19.00 ft.		2		V	y .	V _R	1		1		
1	L _T =	0.00 ft.		9	_		V	Ψ."					
	L _R =	13.40 ft.				< <u>1</u>	→< -R	L _T	→ \	0	Q _{T-t}		ļ
	K _{af} =	0.283		0			R I	-1	h-				
1	γ_r =				Н		1	V ₁				FT	
1	γ_f =	105.0 pcf		-						\	1	\	<u></u>
1	γ_{t} =	105.0 pcf								h/2	h/	3	
-11	β=				Ψ	89 2	$\mu \sum V$			V	V		
1	q _{D top} =	0 psf	Ŭ			_	μ2.	1	<u></u>				
1	<i>q</i> _{D-b} =												
1	$q_{\text{T-top}}=$			-			-						
1	$q_{\text{T-beh}}=$			<i>р</i> _н =	0 lb	വ/I F	-	rounding	force	2	length	2	2
1		red Loads:					nt about			2	<u> </u>	Arm	M
1	Official	TCu Louds.	11011	ZOTTAL, V.	T tituli G	7101110.	. It about	1 On to 7 t		(kins/IF)	12	<u> </u>	
-	V ₁ = γ _r H	11		Deinforced	Macc		EV				L/2=		
1	V 1= 7r · ·	! L		Reinforced I	Vlass		LV	+	V 1	20.73		0.70	117.0
1	V (1/	2) γ _t (h-H) L	I _	Ton Tringle	Macc		EV		<i>V</i> _T	0.00	2L _T /3=	0.00	0.0
1	V 1- (1/2	2) Yt (11-11) L	- T	Top Tringle	VIass		LV	+	V 1	0.00	21,0	 :	0.0
i	$V_{R} = \gamma_{t}$ ((h_H) I _n		Top Rectang	alo Mass		EV		Vs	0.00	L _T + L _R /2=	6 70	0.0
1	ν _R - γι	11-11) L _R		TOP Rectains	JIE IVIASS		LV	+	v R	0.00	L T+ L R/ Z-	0.70	0.0
i	Г (1/2	1) h ² / si	- O	Farth Droop			EU			0.00	1 –	12 10	
1	F _{TV} =(1/2	?) $\gamma_f h^2 K_{af}$ si $F_{T} = 5.36$	ΠÞ	Earth Pressu	ıre		LH.	↓	ΓTV	0.00	L-	13.40	0.0
1	5 (1/2						-,,		F	F 2/	h/2_	/ 11	22.0
-	F _{TH} =(1/2	$(2) \gamma_f h^2 K_{af} co$	OS B	Earth Pressu	ıre		EH	←	F _{TH}	5.36	h/3=	6.33	33.9
								1,		0.00	1./2		
- [$Q_{\text{D top-V}}=$	(q _{D top}) L		Surch.Dead:	Тор		ES-t	Ţ	Q _{Dtop-V}	0.00	L/2=	6.70	0.0
į	~ <i>(</i> -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•				= -0.1			2.00		40.40	
-	$Q_{\rm DV} = (q_{\rm I}$	_D) <i>h K</i> _{af} sin	β	Surch.Dead:	Behind		ES-b	Ţ	Q_{DbV}	0.00	L=	13.40	0.0
1				ļ				<u> </u>					
- 5	$Q_{\rm DH}=(q_{\rm I}$	_D) h K _{af} cos	, β	Surch.Dead:	Behind		ES-b	←	Q _{DbH}	0.00	h/2=	9.50	0.0
į													
	$Q_{\text{T top-V}}=$	$(q_{T}) L$		Surch.Traffio	с:Тор		LS-t	Ţ	Q_{Ttop-V}	3.35	L/2=	6.70	22.4
-											į	: : :	
	$Q_{TV} = (q_{T})$	_{T-b}) <i>hK</i> _{af} sin	ι β	Surch.Traffio	c:Behind		LS-b	Ţ	Q_{TbV}	0.00	L =	13.40	0.0
į							<u></u>				į		
	$Q_{TH} = (q_{T-b})$) $hK_{af}\cos \beta + P$	BR	Surch.traffic	::Behind		LS-b	←	Q_{TbH}	1.34	h/2=	9.50	12.7
- 7							-	:				:	-

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Validation:

Coding: skk 10/27/2016

scb by MSE-W 10/31

Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021

Str. No. Walls 1	& 3, Sta.2	24+50 (h	=19')						Check:	scb 12/	20/2021
Static Sliding				5		2	- - - - - -	3	- - - - - -	4	
5	9	11	8			Strength	I(max)	Strength	I(Min)	Critical	
Horizontal Drivir	ng Forces			Д	SD	Max.Loa		Min.Load Factor		Crit.Load Factor	
Horizontal Forces				Factor	Load	Factor	Load	Factor	Load	Factor	Load
5 Earth Pressure	←	5.36	EH	1.0	5.36	1.50	8.04	0.90	4.82	1.50	8.04
8 Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
11 Surch.traffic:Behind	←	1.34	LS-b	1.0	1.34	1.75	2.35	0.00	0.00	1.75	2.35
Total Hori:	zontal		Σ H driving	1	6.70		10.39		4.82		10.39
							- - - - -	- - - -	- - - -	:	
Vertical Loads								- - 	: : :		
1 Reinforced Mass	\downarrow	26.73	EV	1.0	26.73	1.35	36.09	1.00	26.73	1.00	26.73
2 Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
3 Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00
4 Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6 Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00		0.00	1.00	0.00
7 Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9 Surch.Traffic:Top	\downarrow	3.35	LS-t	0.0	0.00	1.75	5.86	0.00	0.00	0.00	0.00
10 Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
Total Verti	cal		ΣV		26.73		41.95	 G	26.73		26.73
									- - 		
Resisting Horizontal I	oads for	φ _{crit} =	30.00		ASD		Max	y	Min		Crit.
1 Reinforced Mass	\downarrow				15.43		20.83		15.43		15.43
2 Top Tringle Mass	\downarrow				0.00		0.00	-	0.00		0.00
3 Top Rectangle Mass	\downarrow				0.00		0.00		0.00	<u>.</u>	0.00
4 Earth Pressure	\downarrow				0.00		0.00		0.00	<u>.</u>	0.00
6 Surch.Dead:Top	\downarrow				0.00		0.00		0.00	<u>.</u>	0.00
7 Surch.Dead:Behind	\downarrow				0.00		0.00	- - -	0.00	<u>.</u>	0.00
9 Surch.Traffic:Top	\downarrow				0.00		3.38	- - - - -	0.00		0.00
10 Surch.Traffic:Behind					0.00		0.00		0.00		0.00
Cohesion	$C_{H} = c_{fd} L$	i			0.00		0.00		0.00		0.00
			ΣV _{resist}		15.43		24.22	- - - - - -	15.43	: :	15.43
Results											
ASD	FS _{SL} =	2.303					Load F	Max	Min	Crit	ASD
LRFD	CDR=	1.486					EV	1.35	1.00	1.00	1.0
	grid reinfo						EH	1.50	0.90	1.50	1.0
	angle may be taken as minimum						ES-t	1.35	1.00	1.00	1.0
two thir	ds of rein	forced so	oil frictio	n angle,	(2/3) ϕ_r		ES-b	1.50	0.75	1.50	1.0
	30.00		Sli	ding ${f \phi}_r=$	34		LS-t	1.75	0.00	0.00	0.0
	22.67			φ _{crit} =	22.67		LS-b	1.75	0.00	1.75	1.0

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

		Rei:FHW	A-NHI-10-	024 &02	5				Va	alidation:	scb by M	SE-W 10/3	
Project	: Opitz Bl	ve			_	WRA#:	032023.	000		Design:	skk 12/20/2021		
Str. No	. Walls 1	& 3, Sta.	24+50 (h=	:19')						Check:	scb 12/	′20/2021	
Eccent	ricity:				5		2		3	-	4		
Į	5	9		8									
					ASD	LRFD	Max.Load	Factored	Min.Load	Factored	Crit.Load	Factored	
Momen	ts: Counte	r-Clockwis	14		Un-facto	red	Factor	Load	Factor	Load	Factor	Load	
5 Earth Pre	ssure	←	33.93	EH	1.0	33.93	1.50	50.90	0.90	30.54	1.50	50.90	
8 Surch.De	ad:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
11 Surch.tra	ffic:Behind	←	12.73	LS-b	1.0	12.73	1.75	22.28	0.00	0.00	1.75	22.28	
Total: C	ounter-Clo	ckwise M	oments	ΣΜ.		46.66		73.17		30.54		73.17	
										-			
Momen	ts: Clockw	ise	14		-	-				-	-		
1 Reinforce	ed Mass	\downarrow	179.09	EV	1.0	179.09	1.35	241.77	1.00	179.09	1.00	179.09	
2 Top Tring	le Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
3 Top Recta	angle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
4 Earth Pre	ssure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00	
6 Surch.De	ad:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
7 Surch.De	ad:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
9 Surch.Tra	ıffic:Top	\downarrow	22.45	LS-t	0.0	0.00	1.75	39.29	0.00	0.00	0.00	0.00	
10 Surch.Tra		\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00	
Total: C	lockwise N	1oments		ΣM_{+}		179.09		281.06		179.09		179.09	
į	5	9				8							
Vertica	l Load		11		0								
1 Reinforce		T	26.73	EV	1.0	26.73	1.35	36.09	1.00	26.73	1.00	26.73	
2 Top Tring		↓	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
	angle Mass	E	0.00	EV	1.0	0.00		0.00		0.00	÷	0.00	
4 Earth Pre		Ψ	0.00	EH	1.0	0.00		0.00		0.00	Ŷ	0.00	
6 Surch.De		↓	0.00	ES-t	1.0	0.00		0.00	1.00	0.00		0.00	
7 Surch.De		J.	0.00		1.0	0.00		0.00		0.00	<u> </u>	0.00	
9 Surch.Tra		J	3.35		0.0	0.00		5.86		0.00	<u> </u>	0.00	
10 Surch.Tra		J	0.00		1.0	0.00		0.00	0.00	0.00	÷	0.00	
	ertical Load	ř		ΣV	ē	26.73		41.95		26.73		26.73	
			oint A, y		Ē	4.95		4.96		5.56		3.96	
	Eccentri		= L/2-y								 !		
		-		······				Load F	Max	Min	Crit	ASD	
Result	s:	-	i i					EV	1.35	1.00	1.00	1.0	
			e=L/2-y	e/L		=		EH	1.50	0.90	1.50	1.0	
ASD			1.75 ft.	0.130	Ok			ES-t	1.35	1.00	1.00	1.0	
LRFD	Max		1.74 ft.	0.130	Ē			ES-b	1.50	0.75	1.50	1.0	
LRFD	Min		1.14 ft.	0.085				LS-t	1.75	0.73	0.00	0.0	
LRFD	Crit.		2.74 ft.	0.204	ģ			LS-b	1.75	0.00	1.75	1.0	
	J. 10.		۷., ۱۱۲۰	0.207	E			200	1.75	3.00	1.75	7.0	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

2016-06 Version:

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31 Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Str. No. Walls 1 & 3, Sta. 24+50 (h=19') Check: scb 12/20/2021 Critical Bearing: 4 8 Eccentri Eccentricity: e = L/2-yMeyerhof str. $\sigma_V = \Sigma V / (L - 2e)$ 5 14 ASD **LRFD** Max.Load Factored Min.Load Factored Crit.Load Factored Factor Load Factor Load Factor Load Moments: Counter-Clockwise Un-factored 5 Earth Pressure 1.0 33.93 50.90 33.93 EΗ 1.50 50.90 0.90 30.54 1.50 8 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 1.50 0.00 1.50 0.00 12.73 11 Surch.traffic:Behind ← LS-b 1.0 12.73 1.75 0.00 0.00 1.75 22.28 Total: Counter-Clockwise Moments ΣM 73.17 46.66 8 Moments: Clockwise 179.09 1.0 1.35 241.77 1 Reinforced Mass 179.09 1.00 179.09 1.35 241.77 0.00 2 Top Tringle Mass 0.00 ΕV 1.0 0.00 1.35 0.00 1.00 1.35 0.00 3 Top Rectangle Mass 0.00 1.0 0.00 1.35 0.00 1.00 1.35 0.00 ΕV 0.00 1.0 4 Earth Pressure 0.00 EΗ 0.00 1.50 0.00 0.90 0.00 1.50 0.00 1.0 0.00 0.00 6 Surch.Dead:Top 0.00 ES-t 1.35 1.00 0.00 1.50 0.00 7 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 1.50 0.00 0.00 1.50 0.00 1.0 22.45 9 Surch.Traffic:Top 22.45 LS-t 1.75 39.29 0.00 0.00 1.75 39.29 1.0 0.00 10 Surch.Traffic:Behind ↓↓ 0.00 LS-b 1.75 0.00 0.00 1.75 0.00 **Total: Clockwise Moments** ΣM_{+} 201.54 281.06 281.06 8 11 Vertical Load 1 Reinforced Mass 26.73 EV 1.0 26.73 1.35 36.09 1.00 26.73 1.35 36.09 2 Top Tringle Mass 0.00 1.0 0.00 0.00 0.00 0.00 EV 1.35 1.00 1.35 0.00 1.0 0.00 3 Top Rectangle Mass EV 0.00 0.00 0.00 1.35 1.35 1.00 0.00 1.0 0.00 0.00 0.00 0.00 4 Earth Pressure EΗ 1.50 0.90 1.50 0.00 1.0 0.00 0.00 0.00 0.00 6 Surch.Dead:Top ES-t 1.35 1.00 1.50 7 Surch.Dead:Behind 0.00 1.0 0.00 0.00 ES-b 0.00 0.00 0.75 1.50 9 Surch.Traffic:Top 3.35 LS-t 1.0 3.35 1.75 5.86 0.00 0.00 1.75 5.86 10 Surch.Traffic:Behind ↓ 0.00 LS-b 0.00 0.00 0.00 1.00 0.00 1.75 ΣV **Total Vertical Loads** 30.08 41.95 41.95 Resultant from point A, y (ft.) 4.96 5.56 5.15 4.96 1.5 1.75 Results: **ASD LRFD LRFD** Load F Min Crit ASD Max Ser. Min Crit. ΕV 1.35 1.00 1.35 1.0 41.95 Σ V (kips) 30.08 26.73 41.95 EΗ 1.50 0.90 1.50 1.0 (ft) 5.15 4.96 5.56 4.96 ES-t 1.35 1.00 1.50 1.0 e = L/2-y (ft) 1.55 1.74 ES-b 1.50 0.75 1.50 1.0 LS-t 0.116 0.130 1.75 0.00 1.75 1.0 $\sigma_V = \Sigma V / (L - 2e)$ (ksf) 2.921 4.232 LS-b 1.0 1.75 0.00 1.75 1.50 Chosen to match MSE-W approach

Sheet 7 **MSE Wall - External Stability Check** 2016-06 Version: Static Sliding, Eccentricity & Bearing Coding: skk 10/27/2016 Ref:FHWA-NHI-10-024 &025 scb by MSE-W 10/31 Validation: Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Str. No. Walls 1 & 3, Sta. 24+50 (h=19') Check: scb 12/20/2021 Critical Bearing (ctd): Foundation Length $L_w =$ 13.4 ft. Mayerhof Bearing Capacity/Nominal Resistance, q_{ult} = 12.31 ksf Values corresponds to un-factored loads & capacities **ASD** Eccentricity 1.55 ft. Vertical Loads, un-factored ΣV 26.73 kips/LF Required Allowable Bearing Capacity **σ**_V = 2.60 ksf Ultimate Bearing Capacity 12.31 ksf q_{ult} = Factor of Safety against Bearing FS bearing= 4.743 **LRFD** Values corresponds to maximum load factors Serv. Max Min Crit. 1.55 1.74 1.74 Eccentricity 1.14 Vertical Loads, un-factored ΣV 41.95 30.08 41.95 26.73 Required Factored Bearing Stress 4.23 $\sigma_V =$ 2.92 4.23 2.40 Nominal Bearing Capacity 12.31 12.31 12.31 12.31 q_{ult} = Resistance factor for Bearing: 0.65 Φ_b= 0.5 0.65 0.65 8.00 Factored Bearing Resistance 6.16 8.00 8.00 CDR= 1.89 2.11 1.89 3.33 Bearing Resistance: CDR min= Summary: LRFD CDR ASD FS Target Calc. Target Calc. Sliding 1.00 1.49 ok Sliding 2.00 2.30 Bearing Bearing 3.00 4.74 1.00 1.89 **LRFD** Eccentricity Max **ASD** e/L 0.250 0.130 0.204 ok ok Bearing Resistance / Capacity Required Factored Bearing Resistance: 4.23 ksf 2.60 ksf Required Allowable Bearing Capacity: For excentricity and sliding Notes:

EVALUATION OF NOMINAL BEARING RESISTANCE

DATA F	ROM	PREVIOUS	SHEETS:
--------	-----	-----------------	---------

Soil Parameters			12.31					
Cohesion c =	0.0 psf	Foundatn Subgr. Soil Unit Wt. γ	_{fs} 125.0 pcf					
Friction Ang. ϕ_f =	30.0 degree	Surcharge Soil Unit Wt. $\gamma_{ m sur}$	110.0 pcf					
Soils above footing bearing are as competent as subgrade soils? Yes								
Foundation Dimensions	S							
Footing Width B=	13.40 ft.	Footing Depth $D_f =$	2.00 ft					
Footing Length L=	50.00 ft.	$\overline{\qquad}$ 50.00 ft. G.Water Depth $\overline{\qquad}$ $\overline{\qquad}$ $\overline{\qquad}$						
Foundation Loads:								
Unfactored Vert. Load V	/= 26.7 kips	Load Angle θ	0.0 deg					
Unfactored Horz.Load H	l= 6.7 kips	Moment:						
Eccentricity:	$e_{b} = \frac{1.7}{1.7}$ ft.	(<3.4) ok e_L (ft)=	(<12.5) ok					

CALCULATION OF BEARING NOMINAL RESISTANCE:

Bearing Capacity Factors :								
$N_c = (N_q - 1) \cot \phi$ $N_{\gamma} = 2 (N_q + 1) \tan \theta$	$N_q=e^{v(t tall φ)} tan^2(45 v + φ/2)$							
$N_c = 30.14$ $N_{\gamma} = 22.40$	$N_{q} = 18.40$							
Effective Footing Dimensions:	(Area reduction for assumed eccentrici	ty)						
$B' = B - 2e_b = 9.9$ ft	$L'=L-2e_L = 50.0$	ft						
Footing Shape Correction Factors:								
For $\phi = 0$ $S_c = 1 + (B'/5L')$	$S_{\gamma} = 1.0$ $S_{q} = 1$							
For $\phi > 0$ $S_c = 1 + (B'/L') (N_q/N_c)$	$S_{\gamma} = 1 - 0.4 \text{ (B'/L')}$ $S_{q} = 1 +$	(B'/L') tan φ						
$S_c = 0.731$	$S_{\gamma} = 0.921$ S_{q}	S _q = 1.114						
Groundwater Correction Factors								
C _{wq} = 1.000	$C_{w\gamma} = 1.000$)						
Depth Correction Factor:								
Competent surcharge soils: Yes	$D_f/B=0.20$ d_q	= 1.00						
Load Inclination Factors:								
$i_c = 1.000$ $i_q =$	0.705 i _y =	= 0.528						
Nominal Bearing Resistance:								
$q_n = c (N_c S_c i_c) + \gamma_{sur} D_f (N_q S_q d_q i_q) C_{wq} +$	$0.5 \gamma_{fs} B (N_{\gamma} S_{\gamma} i_{\gamma}) C_{w\gamma}$ ASI	D FOS 2.0						
C term 0.00 q term 3.18	B term 9.13 LRFE	O Φq 0.65						
$q_n = 12.31 \text{ ksf}$ Allow	able q 6.16 ksf Factored q 8.00) ksf						

NOTES:

Calc based on assumed foundation length and water table depth.

MSE Wall Calculations – Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.24+50 (19' Wall
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

Elastic Settlement for Embankment
Hough Method Settlement Estimations

Calc Chk: skk

Sheet 2 of 2

Version: V.2.00

Project: Opitz Blvd Express Lane

Location: T-Ramp

Subject:

Subject: T-Ramp Loading mostly granular fill

Stress Destribution for Two Areas							
	Area 1	Area 2	Area 3				
Multiplier	1	1	0				
Height of Embankment	19	19	0				
Soil Unit Weight	108	108	0				
Rectangular Loading Width B	1 18	18	0				
Triangular Loading Width B	2 0	0	0				
FHWA Recommended factor for final settlement: k _{FHWA}							
Default Min. Value for B ₂ = 1E-10	<u> </u>						

 $\Delta\sigma_z = \frac{q_o}{\pi} \left[\left(\frac{B_1 + B_2}{B_2} \right) (\alpha_1 + \alpha_2) - \frac{B_1}{B_2} (\alpha_2) \right]$

$$\Delta H = H \left(\frac{1}{C'}\right) \log_{10} \frac{p_o + \Delta p}{p_o}$$

Settle	ment Ca	lculatio	ns:																
	La	ayer Da	ta				Angles (radians)			Influ	ence Fa	ctors	$q_0^{(a)}$	$q_0^{(b)}$	$q_0^{(c)}$			
Layer	Middle	Layer	Overbr.	Bear.	Area	(a)	Area	(b)	Area	ı (c)	Area(a)	Area (b)	Area (c)	2052	2052	0	Total	Settle	ments
No.	Depth	Thick.	Press.	Factor	B ₁	B ₂	B ₁	B ₂	B ₁	B ₂				q ₀ * I _z (c)	$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	Δр	Per	Cumu.
	Z _{mid}	h_i	\mathbf{p}_0	C'	18.0	0.0	18.0	0.0	0.0	0.0				∆p ^(a)	∆p ^(b)	∆p ^(c)		Layer	
	(ft)	(ft)	(psf)		$\alpha_1^{(a)}$	$\alpha_2^{(a)}$	$\alpha_1^{(b)}$	$\alpha_2^{(b)}$	α ₁ ^(c)	$\alpha_2^{(c)}$	$I_z^{(a)}$	l _z (b)	l _z ^(c)	(psf)	(psf)	(psf)	(psf)	(inch)	(inch)
1	1.5	3.0	172.5	3656	0.000	1.488	0.000	1.488	0.000	0.000	0.474	0.474	0.000	971.6	971.6	0.0	1943.2	0.01	0.01
2	5.8	5.5	675.0	116	0.000	1.262	0.000	1.262	0.000	0.000	0.402	0.402	0.000	824.1	824.1	0.0	1648.2	0.31	0.32
3	13.5	10.0	1630.0	108	0.000	0.927	0.000	0.927	0.000	0.000	0.295	0.295	0.000	605.8	605.8	0.0	1211.5	0.27	0.58
4	21.0	5.0	2505.1	227	0.000	0.709	0.000	0.709	0.000	0.000	0.226	0.226	0.000	462.7	462.7	0.0	925.5	0.04	0.62
5	26.0	5.0	2818.1	193	0.000	0.606	0.000	0.606	0.000	0.000	0.193	0.193	0.000	395.4	395.4	0.0	790.8	0.03	0.65
6	32.3	7.5	3209.4	162	0.000	0.509	0.000	0.509	0.000	0.000	0.162	0.162	0.000	332.4	332.4	0.0	664.8	0.05	0.70
7	43.0	14.0	3882.3	1165	0.000	0.396	0.000	0.396	0.000	0.000	0.126	0.126	0.000	259.0	259.0	0.0	517.9	0.01	0.71
																	ΔH=	0.71	inches
,	•		Final se	ttlemen	t	(k _{FHWA} *	Δ <i>H</i>)	0.71	x 0.50	=	0.35	inches		•	•				

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

E.2.1	Wall 2 – External Stability and Bearing Resistance
E.2.2	Wall 2 – Settlement Analysis at Abutment C
E.2.3	Walls 1 & 3 – Back to Back MSE Check
E.2.4	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
E.2.5	Walls 1 & 3 – Settlements @ Sta.24+50 (19' Wall)
E.2.6	Walls 1 & 3 – Slope Stability @ Sta.24+50 (19' Wall)
E.2.7	Walls 1 & 3 – External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
E.2.8	Walls 1 & 3 – Settlements @ Sta.22+50 (10' Wall)
E.2.9	Walls 1 & 3 – Slope Stability @ Sta.22+50 (10' Wall)
E.2.10	Walls 1 & 3 – Consolidation Settlement at Sta.23+50

I-95 Exressway/Opitz Blvd (Trial-02) Global Stability Sta 24+50

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

- E.2.1 Wall 2 External Stability and Bearing Resistance
- E.2.2 Wall 2 Settlement Analysis at Abutment C
- E.2.3 Walls 1 & 3 Back to Back MSE Check
- E.2.4 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
- E.2.5 Walls 1 & 3 Settlements @ Sta.24+50 (19' Wall)
- E.2.6 Walls 1 & 3 Slope Stability @ Sta.24+50 (19' Wall)
- E.2.7 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
- E.2.8 Walls 1 & 3 Settlements @ Sta.22+50 (10' Wall)
- E.2.9 Walls 1 & 3 Slope Stability @ Sta.22+50 (10' Wall)
- E.2.10 Walls 1 & 3 Consolidation Settlement at Sta.23+50

MSE Wall - External Stability Check

Version: 2016-06

Sheet 1

Static Sliding, Eccentricity & Bearing Coding: skk 10/27/2016 Ref:FHWA-NHI-10-024 &025 Validation: scb by MSE-W 10/31 Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Wall ID Walls 1 & 3, Sta. 22+50 (H=10') Wall No .: Check: scb 12/20/2021 Assumptions/Notes: Front of the abutment is modeled as a triangular portion. Lateral loads behind the wall are assumed to be horizontal (per MSE-W assumption for slope < 45 deg.) Wall Configuration Backfill Slope Broken Back Slope: No Height z (ft.)= Fill (t) Length x (ft.)= Reinforced Fill at Н Infinite Backfill: Yes Soil (r) Back (f) Infinite Slope β_{inf} = Fall face assumed vertical Foundation 0.00 deg. Soil (fd) Case $oldsymbol{eta}_{\mathsf{eq}}$ 0.00 0.00 10.00 Wall Dimensions Exposed wall height H_e = 8.00 ft. Table C.11..10.2.2.-1 Minimum Embedment Embedded Height Minimum Embedment = H/20d =2.00 ft. 0.50 ok Total Wall Length 30.00 ft. <== (for bearing capacity calculations) Friction Angle 34.0 degree Reinforced Backfill Unit Wt. 105.0 pcf **φ**_r = Retained Fill (f) (above and behind reinf. zone) 34.0 degree 105.0 pcf ф = $\gamma_f =$ Foundation Soil: **φ**_{fd} = 30.0 degree 120.0 pcf Cohesion: $C_{\rm fd} = 0.0$ psf Mayerhof Bearing, q_{ult} = 8.68 ksf Top of wall Backfill Friction Angle 34.0 degree Unit Wt. 105.0 pcf ф = Surcharge Loading Traffic @ wall Top 250 psf Dead -top 0 psf $q_{T-t}=$ $q_{D-t}=$ Traffic @ behind wall Dead -Behind 250 psf o psf $q_{T-b}=$ $q_{D-b}=$ Added horizontal Load $P_{\text{BR-H}}=$ 0 lb/LF Design Height and Estimated Reinforcement Length Estimated Reinforcement Length: L= 8.00 ft. Check for minimum L H= Design Height of the wall: $H = H_e + d$ 10.00 ft. 8.0 ft. ok $L_{\min} =$ 0.80 (L/H) ok Ratio for Estimated Reinforcement Length (> 0.7): $L \leq 2H$ ok to use this spreadsheet **Results Summmary** LRFD: ASD: Bearing Resistnace: CDR= **Direct Sliding** 1.395 FS_{Sliding} 2.204 Required Factored Bearing= 2.409 ksf Bearing Resist. CDR= 2.342 6.576 Required Service Bearing= 1.320 ksf FS_{bearing} e/L = 0.203 CDR= e/L = e/L = 0.1150.92 ft 1.232 Critical 0.127

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Ref:FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

Project: 0	Opitz Blv	e				WRA#:	032023.0	000	Desig	jn: skk	12/20/20)21
Str. No. \	Walls 1 8	3, Sta.:	22+50 (H	i=10')					Checl	<: scb	12/20/20	021
						-		-				
 Load Factors			EV	EH	ES	LS		Resistance Factors				
 Strength I (maximum)			1.35	1.50	1.50	1.75		Sliding of	f MSE wall on fo	undatio	n soil	1.00

 Load Factors			EV	EH	ES	LS		Resistar	nce Facto	rs			
 Strength	I (maximı	ım)	1.35	1.50	1.50	1.75		Sliding of	MSE wall	l on found	dation soil	1.00	
 Strength	I (minimu	ım)	1.00	0.90	0.75	0.00		Bearing r	esistance			0.65	
 Service I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.00	1.00	1.00	1.00		Tensile re	esistance	(for steel	strips)	0.75	
 Calculat	ion of $oldsymbol{eta}_{\epsilon}$	eq and <i>h</i>											
 L =	8.0	ft.	Н=	10.0	ft.	<i>X</i> =		ft.	<i>Z</i> =		ft.		
 Case Des	cription			$oldsymbol{eta}_{ ext{eq}}$			Δh		L _T	$L_R = L - L_T$	Г		
 1	For x <z;< td=""><td>$\beta_{eq} = 0$</td><td></td><td></td><td>∆h = z</td><td></td><td></td><td>L_T=0</td><td></td><td></td><td></td><td></td><td></td></z;<>	$\beta_{eq} = 0$			∆ h = z			L _T =0					
 2	x< L	β _{eq} =tan ^{-l}	(z/2H)		∆ h = z			L _T =x					
 3	L <x< 2h<="" td=""><td>β_{eq}=tan ^{-I}</td><td>(z/2H)</td><td></td><td>$\Delta h = Lz$</td><td>?/x</td><td></td><td>L _T=L</td><td></td><td></td><td></td><td></td><td></td></x<>	β _{eq} =tan ^{-I}	(z/2H)		$\Delta h = Lz$?/x		L _T =L					
 4	x > 2H	$oldsymbol{eta}_{ ext{eq}}$ = tan	$^{-1}(z/x)$		$\Delta h = Lz$?/x		L _T =L					
 5	Infinite	$oldsymbol{eta}_{eq} = oldsymbol{eta}_{infi}$	inite	0.00			0.00	L _T =L	0.00	8.00			
 5	<=Curren	ıt Case	$oldsymbol{eta}_{ ext{eq}}$ =	0.00	degree	Δ h =	0.00	ft.	0.00	8.00			
	β_{eq} =			h = H + A	Δ h	h =	10.00	ft.					
Coulomb Active Farth Pressure Co				oefficien'	t	for Potai	inad fill						

Coulomb Active Earth Pressure Coefficient for Retained fill

Reference: Eq. 3.11.5.3-1 AASHTO

$$K_{A} = \frac{\sin^{2}(\theta + \phi')}{\sin^{2}\theta \sin(\theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^{2}}$$

Note:	φ'	> β	φ f ' =	34.0 degree
			R =	0.00 degree
1.5			P -:	0.00 acgree

$$\mathbf{\theta} = 90 + \mathbf{\alpha}$$
 $\mathbf{\theta} = 90.0$ degree $\mathbf{\delta} = \mathbf{\beta}$ $\mathbf{\delta} = 0.0$ degree

$$T_1$$
 = 0.3127
 T_2 = 1
 Γ = [1 + sqrt(T_1/T_2)]²
 Γ = 2.4311

 T_t = 0.6873
 T_b = 1
 K_A = T_t / (T_b * Γ)
 K_{af} = 0.283

Rankine Earth Pressure Coefficients

Equation 5.12 from FHWA-IF-03-017

$$K_{A} = \cos\beta \left[\frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi'}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi'}} \right]$$

(for compari	son purp	oses)		
$T_{sq} = 0.5$	592		$T_{\cos} =$	1
$K_A = T_{cos}$	$_{\rm s}(T_{\rm cons}-7$	$\Gamma_{\rm sq}$)/($T_{\rm o}$	cos+T _{sq}))
L	΄ Λ	വവ		

Note:

scb by MSE-W 10/31

Validation:

	Project: Opitz Blve			WRA#:	032023.		Design: skk 12/20/2021					
	Str. No. Walls 1 & 3, Sta	a. 22+50 (H=10')						Check: scb 12/20/2021				
	Loads and Moments:											
	Data for Calculations:			- (2 _{T-t}							
	L = 8.00 ft.			. (Q _{T-t}		$P_{\rm H}$					
	H= 10.00 ft.		li.		≺ 1-1							
	h = 10.00 ft.		V _T		VR	1		1				
	$L_{T} = 0.00 \text{ ft.}$				Ψ "							
	L _R = 8.00 ft.		< L _R	><	L _T	->	Q _{T-t}	Q _{T-t}		10000		
	$K_{af} = 0.283$		-K			h			_	10000		
	γ _r = 105.0 pcf	Н		1	/ 1			\ \	F _T			
	γ _f = 105.0 pcf						- 12	1	\			
	γ _t = 105.0 pcf						h/2	h/	3			
	β = 0.00 deg.	<u> </u>	257.55	$\mu \sum V$		Y	•	V	_			
	$q_{\text{D top}} = 0 \text{ psf}$			μ <u></u> Ζ, τ	L	->						
	$q_{\text{D-b}}$ = 0 psf											
	$q_{\text{T-top}}$ = 250 psf			***************************************								
	$q_{\text{T-beh}}$ = 250 psf	<i>p</i> _H = 0	lb/LF		rounding	force	2	length	2	2		
	Un-factored Loads: Hor				`				Arm	M		
							(kips/LF)			(ft. kips)		
1	$V_{1} = \gamma_r H L$	Reinforced Mass		EV	I.	V ₁						
					Y							
2	V_{T} = (1/2) γ_{t} (h-H) L_{T}	Top Tringle Mass		EV	l	V _T	0.00	2L _T /3=	0.00	0.00		
					.	'						
3	$V_{R} = \gamma_{t} (h-H) L_{R}$	Top Rectangle Mass		EV	ı	V_{R}	0.00	L _T + L _R /2=	4.00	0.00		
	- K /(/ - K				***************************************	- K						
4	F_{TV} =(1/2) $\gamma_{\text{f}} h^2 K_{\text{af}} \sin \boldsymbol{\beta}$	Farth Pressure		ЕН	l	F _{TV}	0.00	L =	8.00	0.00		
	$F_{T} = 1.49$				***************************************	- 10						
5	$F_{\text{TH}}=(1/2) \gamma_f h^2 K_{\text{af}} \cos \boldsymbol{\beta}$	Farth Pressure		ЕН	←	F_{TH}	1.49	h/3=	3.33	4.96		
	7 H (172) 17 Naj 003	Zartiii Tossaro				, 111	,		0.00			
6	$Q_{D \text{ top-V}} = (q_{D \text{ top}}) L$	Surch.Dead:Top		ES-t	l	Q _{Dtop-V}	0.00	L/2=	4.00	0.00		
	~ D top-v (4 D top) 2	Suren. Dead. 10p		LUT	*	□ Dtop-v	0.00		1.00	0.00		
7	$Q_{\rm DV} = (q_{\rm D}) h K_{\rm af} \sin \boldsymbol{\beta}$	Surch.Dead:Behind		ES-b	l	Q_{DbV}	0.00	L =	8.00	0.00		
	Z DV (4 D) TT ar SIII P	Sur cri. Dead. Derima		200	+	∠ DDV	0.00		0.00	. 0.00		
ρ	$Q_{\rm DH}$ = $(q_{\rm D}) h K_{\rm af} \cos \beta$	Surch.Dead:Behind		ES-b	←	Q_{DbH}	0.00	h/2=	5.00	0.00		
	C DH (Y D) TT AT GGS P	cardi.bedd.belliid		LUD	•	→ DDH	5.00		5.00	0.00		
0	$Q_{Ttop-V} = (q_{T}) L$	Surch.Traffic:Top		LS-t	1	0	2.00	L/2=	4.00	8.00		
7	~ 1 top-v = (4)	Jaren, Hallie, 10p		LJ-l	+	Q _{T top-V}	2.00	-/-	т.ОО	0.00		
10	$Q_{\text{TV}} = (q_{\text{T-b}}) h K_{\text{af}} \sin \beta$	Surch.Traffic:Behind		LS-b	1	Λ	0.00	I =	8.00	0.00		
10	~ 1V- (4 1-b) 11 1 af 3111 þ	ouren. Hanne:Beriina		LJ-U	+	Q_{TbV}	0.00		0.00	0.00		
11	$Q_{TH}=(q_{T-b}) h K_{af} \cos \beta + P_{BR}$	Surch.traffic:Behind		LS-b	—	0-	0.71	h/2=	5.00	3.55		
11	CIHT (91-b) III AI COS PTI BR	Sui cii. (i ai ii c.Bei iii id	-	L3-N	^	Q _{TbH}						
	1 2 3	4 5 6	/	8	9	10	11	12	13	14		

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing

Version: 2016-06

Coding: skk 10/27/2016

Ref:FHWA-NHI-10-024 &025 scb by MSE-W 10/31 Validation: Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Str. No. Walls 1 & 3, Sta. 22+50 (H=10') Check: scb 12/20/2021 Static Sliding 5 4 2 3 Strength I(Min) Critical Strength I(max) Horizontal Driving Forces **ASD** Crit.Load Factor Max.Load Factor Min.Load Factor Horizontal Forces Factor Load Factor Load Factor Factor Load 1.34 5 Earth Pressure 1.49 EΗ 1.49 1.50 2.24 1.0 2.24 0.90 8 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 1.50 0.00 0.75 0.00 1.50 0.00 LS-b 1.0 11 Surch.traffic:Behind ← 0.71 0.71 1.75 1.75 1.24 0.00 0.00 1.24 Σ H driving 2.20 3.48 1.34 ---Total Horizontal 3.48 Vertical Loads 1.0 1 Reinforced Mass 8.40 1.35 11.34 8.40 ΕV 1.00 8.40 1.00 8.40 2 Top Tringle Mass 0.00 ΕV 1.0 0.00 1.35 0.00 1.00 0.00 1.00 0.00 3 Top Rectangle Mass ↓ 0.00 EV 1.0 0.00 1.35 0.00 0.00 1.00 0.00 1.00 4 Earth Pressure 1.0 0.00 EΗ 0.00 0.00 0.90 0.00 1.50 0.00 6 Surch.Dead:Top ES-t 0.00 0.00 1.0 1.35 0.00 1.00 0.00 1.00 0.00 7 Surch.Dead:Behind 0.00 ES-b 1.0 0.00 1.50 0.00 0.75 0.00 1.50 0.00 9 Surch.Traffic:Top 0.0 2.00 LS-t 0.00 1.75 0.00 0.00 0.00 0.00 10 Surch.Traffic:Behind ↓ LS-b 0.00 1.0 0.00 1.75 0.00 0.00 0.00 1.75 0.00 ΣV 8.40 Total Vertical 14.84 8.40 8.40 Resisting Horizontal Loads for 30.00 ASD Max Min Crit. Φ_{crit}= 1 Reinforced Mass 4.85 6.55 4.85 4.85 0.00 0.00 0.00 0.00 2 Top Tringle Mass 0.00 3 Top Rectangle Mass 0.00 0.00 0.00 4 Earth Pressure 0.00 0.00 0.00 6 Surch.Dead:Top 0.00 0.00 0.00 0.00 7 Surch.Dead:Behind 0.00 0.00 0.00 0.00 9 Surch.Traffic:Top 0.00 0.00 0.00 10 Surch.Traffic:Behind リ 0.00 0.00 0.00 0.00 Cohesion $C_{H} = c_{fd} L$ 0.00 0.00 ΣV_{resist} 8.57 4.85 4.85 4.85 Results **ASD** $FS_{SI} =$ 2.204 Crit ASD Load F Max Min **LRFD** CDR= 1.395 ΕV 1.35 1.00 1.00 1.0 For geogrid reinforced MSE, the sliding friction Note: EΗ 1.50 0.90 1.50 1.0 angle may be taken as minimum of ϕ_{fd} and ES-t 1.35 1.00 1.00 1.0 two thirds of reinforced soil friction angle, $(2/3) \phi_r$ ES-b 1.50 0.75 1.50 1.0 34 LS-t $\Phi_{fd} = 30.00$ Sliding $\phi_r =$ 0.00 0.00 1.75 0.0 $2/3 \, \Phi_r = 22.67$ 22.67 LS-b **φ**_{crit}= 1.75 0.00 1.75 1.0

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing Ref: FHWA-NHI-10-024 &025

Version: 2016-06

Coding: skk 10/27/2016

		Ref:FHW	A-NHI-10-	024 &02!	5				Va	alidation:	scb by MSE-W 10/31		
Project	: Opitz Bl	ve				WRA#:	032023.	000		Design:	skk 12/20/2021		
Str. No	. Walls 1	& 3, Sta.:	22+50 (H	=10')						Check:	scb 12/	20/2021	
Eccent	ricity:				5	-	2		3		4		
Ę	5	9		8									
	į				ASD	LRFD	Max.Load	Factored	Min.Load	Factored	Crit.Load	Factored	
Momen	ts: Counte	r-Clockwis	14		Un-factor	ed	Factor	Load	Factor	Load	Factor	Load	
5 Earth Pre	ssure	←	4.96	EH	1.0	4.96	1.50	7.44	0.90	4.46	1.50	7.44	
8 Surch.De	ad:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
11 Surch.tra	ffic:Behind	←	3.55	LS-b	1.0	3.55	1.75	6.21	0.00	0.00	1.75	6.21	
Total: C	ounter-Clc	ckwise Mo	oments	ΣΜ.		8.51		13.65		4.46		13.65	
Momen	ts: Clockw	ise	14									- - - - -	
1 Reinforce	ed Mass	\downarrow	33.60	EV	1.0	33.60	1.35	45.36	1.00	33.60	1.00	33.60	
2 Top Tring	jle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
-	angle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
4 Earth Pre	ssure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00	
6 Surch.De	ad:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
7 Surch.De	ad:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
9 Surch.Tra	nffic:Top	\downarrow	8.00	LS-t	0.0	0.00	1.75	14.00	0.00	0.00	0.00	0.00	
0 Surch.Tra	nffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00	
Total: C	lockwise N	1oments		ΣM_+		33.60		59.36		33.60		33.60	
Ę	5	9				8							
Vertica	ıl Load		11										
1 Reinforce	ed Mass	\downarrow	8.40	EV	1.0	8.40	1.35	11.34	1.00	8.40	1.00	8.40	
2 Top Tring	jle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
3 Top Recta	angle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
4 Earth Pre	ssure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00	
6 Surch.De	ad:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.00	0.00	
7 Surch.De	ad:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00	
9 Surch.Tra	nffic:Top	\downarrow	2.00	LS-t	0.0	0.00	1.75	3.50	0.00	0.00	0.00	0.00	
10 Surch.Tra	nffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00	
Total Ve	ertical Load	ds		ΣV		8.40		14.84		8.40		8.40	
	Resultan	t from po	oint A, <i>y</i>	(ft.)		2.99		3.08		3.47		2.37	
	Eccentr	city: e	= L/2-y	(ft.)	M111111111111111111								
								Load F	Max	Min	Crit	ASD	
Result	s:				-			EV	1.35	1.00	1.00	1.0	
		(e=L/2-y	e/L				EH	1.50	0.90	1.50	1.0	
ASD			1.01 ft.	0.127	Ok			ES-t	1.35	1.00	1.00	1.0	
LRFD	Max		0.92 ft.	0.115	Ok			ES-b	1.50	0.75	1.50	1.0	
LRFD	Min		0.53 ft.	0.066	Ok			LS-t	1.75	0.00	0.00	0.0	
LRFD	Crit.		1.63 ft.	0.203	Ok		-	LS-b	1.75	0.00	1.75	1.0	

MSE Wall - External Stability Check

Static Sliding, Eccentricity & Bearing Ref:FHWA-NHI-10-024 &025

Coding: skk 10/27/2016

Validation: scb by MSE-W 10/31

2016-06

Version:

 Project: Opitz Blve
 WRA#: 032023.000
 Design: skk 12/20/2021

	Troject. Opriz bit						032023.0			Ü	3KK 127	
	Str. No. Walls 1	& 3, Sta.2	22+50 (H	=10')		-		=		Check:	scb 12/	20/2021
	Critical Bearing	:			5		2		3	: : : :	4	
	5	9	14	8	Eccentri	Eccentri	city: e	= L/2-y	Meye	rhof str.	$\sigma_{V} = \Sigma V$	/(L -2e)
					ASD	LRFD		Factored		Factored	Crit.Load	Factored
	Moments: Counter	r-Clockwis	e		Un-factore	ed	Factor	Load	Factor	Load	Factor	Load
5	Earth Pressure	←	4.96	EH	1.0	4.96	1.50	7.44	0.90	4.46	1.50	7.44
8	Surch.Dead:Behind	←	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
11	Surch.traffic:Behind	←	3.55	LS-b	1.0	3.55	1.75	6.21	0.00	0.00	1.75	6.21
	Total: Counter-Clo	ckwise Mc	ments	ΣΜ.		8.51		13.65		4.46		13.65
	5 9 14		8									
	Moments: Clockwi	se										
1	Reinforced Mass	\downarrow	33.60	EV	1.0	33.60	1.35	45.36	1.00	33.60	1.35	45.36
2	Top Tringle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
	Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
4	Earth Pressure	4	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6	Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7	Surch.Dead:Behind	4	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9	Surch.Traffic:Top	4	8.00	LS-t	1.0	8.00	1.75	14.00	0.00	0.00	1.75	14.00
10	Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.0	0.00	1.75	0.00	0.00	0.00	1.75	0.00
	Total: Clockwise M	1oments		ΣM_+		41.60		59.36		33.60		59.36
	5	9	11	8						-		
	Vertical Load									[0	
1	Reinforced Mass	4	8.40	EV	1.0	8.40	1.35	11.34	1.00	8.40	1.35	11.34
2	Top Tringle Mass	4	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
3	Top Rectangle Mass	\downarrow	0.00	EV	1.0	0.00	1.35	0.00	1.00	0.00	1.35	0.00
4	Earth Pressure	\downarrow	0.00	EH	1.0	0.00	1.50	0.00	0.90	0.00	1.50	0.00
6	Surch.Dead:Top	\downarrow	0.00	ES-t	1.0	0.00	1.35	0.00	1.00	0.00	1.50	0.00
7	Surch.Dead:Behind	\downarrow	0.00	ES-b	1.0	0.00	1.50	0.00	0.75	0.00	1.50	0.00
9	Surch.Traffic:Top	\downarrow	2.00	LS-t	1.0	2.00	1.75	3.50	0.00	0.00	1.75	3.50
10	Surch.Traffic:Behind	\downarrow	0.00	LS-b	1.00	0.00	1.75	0.00	0.00	0.00	1.75	0.00
	Total Vertical Load	ls		ΣV		10.40		14.84		8.40		14.84
	Resultan	t from po	int A, y	(ft.)	_	3.18		3.08		3.47		3.08
										1.5	1.75	
	Results:	ASD	LRFD	LRFD	LRFD			Load F	Max	Min	Crit	ASD
		Ser.	Max	Min	Crit.			EV	1.35	1.00	1.35	1.0
	ΣV (kips)	10.40	14.84	8.40	14.84			EH	1.50	0.90	1.50	1.0
	(ft)	3.18	3.08	3.47	3.08			ES-t	1.35	1.00	1.50	1.0
	e = L/2-y (ft)	0.82	0.92	0.53	0.92			ES-b	1.50	0.75	1.50	1.0
	e/L	0.102	0.115	0.066	0.115			LS-t	1.75	0.00	1.75	1.0
	$\sigma_V = \Sigma V / (L - 2e)$ (ksf)		2.409	1.211	2.409			LS-b	1.75	0.00	1.75	1.0
						1.50	Chosen to	match MS	E-W approa	nch		
	e = L/2-y (ft) e/L	0.82 0.102	3.08 0.92 0.115 2.409		0.92 0.115			ES-b LS-t LS-b	1.50 1.75 1.75	0.75 0.00 0.00	1.50 1.75 1.75	1.0 1.0 1.0

Sheet 7 **MSE Wall - External Stability Check** 2016-06 Version: Static Sliding, Eccentricity & Bearing Coding: skk 10/27/2016 Ref:FHWA-NHI-10-024 &025 scb by MSE-W 10/31 Validation: Project: Opitz Blve WRA#: 032023.000 Design: skk 12/20/2021 Str. No. Walls 1 & 3, Sta. 22+50 (H=10') Check: scb 12/20/2021 Critical Bearing (ctd): Foundation Length $L_w =$ 8.0 ft. Mayerhof Bearing Capacity/Nominal Resistance, q_{ult} = 8.68 ksf Values corresponds to un-factored loads & capacities **ASD** Eccentricity 0.82 ft. Vertical Loads, un-factored ΣV 8.40 kips/LF 1.32 ksf Required Allowable Bearing Capacity $\sigma_V =$ Ultimate Bearing Capacity 8.68 ksf q_{ult} = Factor of Safety against Bearing FS bearing= 6.576 **LRFD** Values corresponds to maximum load factors Serv. Max Min Crit. 0.82 0.92 0.92 Eccentricity Vertical Loads, un-factored ΣV 10.40 14.84 8.40 14.84 Required Factored Bearing Stress 1.63 2.41 $\sigma_V =$ 2.41 1.21 Nominal Bearing Capacity 8.68 8.68 8.68 8.68 q_{ult} = Resistance factor for Bearing: 0.5 0.65 Φ_b= 0.65 0.65 4.34 5.64 Factored Bearing Resistance 5.64 5.64 CDR= 2.66 2.34 4.66 2.34 Bearing Resistance: CDR min= 2.34 Summary: LRFD CDR ASD FS Target Calc. Target Calc. Sliding 1.00 1.40 ok Sliding 2.00 2.20 Bearing Bearing 3.00 6.58 1.00 2.34 **LRFD** Eccentricity Max **ASD** e/L 0.250 0.127 0.203 ok ok Bearing Resistance / Capacity Required Factored Bearing Resistance: 2.41 ksf 1.32 ksf Required Allowable Bearing Capacity: For excentricity and sliding Notes:

EVALUATION OF NOMINAL BEARING RESISTANCE

DATA	FROM	PREVIOL	JS SHEETS:
------	------	----------------	------------

Bearing Capacity Factors:

Soil Parameters			8.68										
Cohesion c =	0.0 psf	Foundatn Subgr. Soil Unit Wt. $\gamma_{\rm f}$	125.0 pcf										
Friction Ang. ϕ_f =	30.0 degree	Surcharge Soil Unit Wt. $\gamma_{\rm sur}$	120.0 pcf										
Soils above footing bearing are as competent as subgrade soils? Yes													
Foundation Dimensions													
Footing Width B=	8.00 ft.	Footing Depth $D_f =$	2.00 ft										
Footing Length L=	30.00 ft.	G.Water Depth $D_w =$	50.00 ft										
Foundation Loads:													
Unfactored Vert. Load V	′= 8.4 kips	Load Angle θ	0.0 deg										
Unfactored Horz.Load H	l= 2.2 kips	Moment:											
Eccentricity:	$e_{b} = 1.0 \text{ ft.}$	(<2.0) ok e _L (ft)=	(<7.5) ok										

CALCULATION OF BEARING NOMINAL RESISTANCE:

$N_c = (N_q - 1)$	арасну гасц сотф		_а +1) tanф	$N_a = e^{iv \cdot tali \varphi_j} tan^2 (45^{\circ} + \varphi/2)$							
$N_c = 3$		$N_{\gamma} = 2$ (N)	•	1	18.40						
Effective	Footing Dime	/		•	for assumed eco	centricity)					
B' =B	$6-2e_b = 6.0$	ft		L	'=L-2e _L =	30.0 ft					
Footing S	hape Correct	ion Factors	S:								
For $\phi = 0$	$S_{c} = 1 +$	· (B'/5L')		$S_{\gamma} = 1.0$		$S_q = 1$					
For $\phi > 0$	$S_{c} = 1 +$	(B'/L') (N _q	/N _c)	$S_{\gamma} = 1 - 0.4 (B'/L)$	')	$S_q = 1 + (B'/L')$	tan φ				
	S_{c}	= 0.732		$S_{\gamma} = 0.92$		$S_{q} = 1.115$					
Groundw	ater Correcti	on Factors									
	C_{wq}	= 1.000			$C_{w\gamma} =$	1.000					
Depth Co	rrection Fact	or:									
Compete	nt surcharge :	soils: Y	'es	D _f /B=	0.33	$d_{q} = 1.00$					
Load Incli	ination Facto	rs:									
$i_c =$	1.000		i q =	0.692		i _γ =	0.511				
Nominal	Bearing Resis	stance:									
$q_n = c (N_c)$	$S_c i_c$) + $\gamma_{sur} D_f$	$= (N_q S_q d_q i_c)$	$_{\rm q}$) C _{wq} + 0.5 $\gamma_{\rm fs}$ E	$S(N_{\gamma} S_{\gamma} i_{\gamma}) C_{w\gamma}$		ASD FOS	2.0				
C term	0.00	q term	3.41	B term	5.27	LRFD Φq	0.65				
q _n =	8.68 ksf		Allowable q	4.34 ksf	Factored q	5.64 ksf					
						-					

NOTES:

Calc based on assumed foundation length and water table depth.

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

- E.2.1 Wall 2 External Stability and Bearing Resistance
- E.2.2 Wall 2 Settlement Analysis at Abutment C
- E.2.3 Walls 1 & 3 Back to Back MSE Check
- E.2.4 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
- E.2.5 Walls 1 & 3 Settlements @ Sta.24+50 (19' Wall)
- E.2.6 Walls 1 & 3 Slope Stability @ Sta.24+50 (19' Wall)
- E.2.7 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
- E.2.8 Walls 1 & 3 Settlements @ Sta.22+50 (10' Wall)
- E.2.9 Walls 1 & 3 Slope Stability @ Sta.22+50 (10' Wall)
- E.2.10 Walls 1 & 3 Consolidation Settlement at Sta.23+50

Elastic Settlement for Embankment
Hough Method Settlement Estimations

Calc Chk: skk

Sheet 2 of 2

V.2.00

Version:

Project: Opitz Blvd Express Lane

Location: T-Ramp

Subject:

Subject: T-Ramp Loading mostly soil

Stress Destribution for Two Areas	S		
	Area 1	Area 2	Area 3
Multiplier	1	1	0
Height of Embankment	10	10	0
Soil Unit Weight	115	115	0
Rectangular Loading Width B_1	18	18	0
Triangular Loading Width B_2	0	0	0
FHWA Recommended factor for final se	ettlement:	k _{FHWA}	0.5
Default Min. Value for B ₂ = 1E-10			

 $\Delta\sigma_z = \frac{q_o}{\pi} \left[\left(\frac{B_1 + B_2}{B_2} \right) (\alpha_1 + \alpha_2) - \frac{B_1}{B_2} (\alpha_2) \right]$

$$\Delta H = H \left(\frac{1}{C'}\right) \log_{10} \frac{p_o + \Delta p}{p_o}$$

Settlement Calculations:																			
	La	ayer Da	ta			,	Angles (radians)			Influ	ence Fa	ctors	$q_0^{(a)}$	$q_0^{(b)}$	$q_0^{(c)}$			
Layer	Middle	Layer	Overbr.	Bear.	Area	ı (a)	Area	(b)	Area	ı (c)	Area(a)	Area (b)	Area (c)	1150	1150	0	Total	Settle	ments
No.	Depth	Thick.	Press.	Factor	B ₁	B ₂	B ₁	B_2	B ₁	B_2		, ,	, ,	$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	∆р	Per	Cumu.
	Z _{mid}	h _i	p ₀	C'	18.0	0.0	18.0	0.0	0.0	0.0				∆p ^(a)	∆p ^(b)	∆p ^(c)		Layer	
	(ft)	(ft)	(psf)		$\alpha_1^{(a)}$	$\alpha_2^{(a)}$	$\alpha_1^{(b)}$	$\alpha_2^{(b)}$	α ₁ ^(c)	$\alpha_2^{(c)}$	$I_z^{(a)}$	l _z (b)	l _z ^(c)	(psf)	(psf)	(psf)	(psf)	(inch)	(inch)
1	2.0	4.0	230.0	147	0.000	1.460	0.000	1.460	0.000	0.000	0.465	0.465	0.000	534.4	534.4	0.0	1068.8	0.25	0.25
2	5.5	3.0	640.0	76	0.000	1.274	0.000	1.274	0.000	0.000	0.406	0.406	0.000	466.4	466.4	0.0	932.9	0.18	0.43
3	11.5	9.0	1382.5		0.000	1.002	0.000	1.002	0.000	0.000	0.319	0.319	0.000	366.9	366.9	0.0	733.7		
4	17.0	2.0			0.000	0.814	0.000	0.814	0.000	0.000	0.259	0.259	0.000	298.0	298.0	0.0	595.9	0.05	0.78
5	19.0	2.0	2320.0	23	0.000	0.758	0.000	0.758	0.000	0.000	0.241	0.241	0.000	277.6	277.6	0.0	555.2	0.10	0.88
6	28.0	16.0			0.000	0.571	0.000	0.571	0.000	0.000	0.182	0.182	0.000	209.1	209.1	0.0	418.1		
7	43.0	14.0	3884.8	108	0.000	0.396	0.000	0.396	0.000	0.000	0.126	0.126	0.000	145.1	145.1	0.0	290.3	0.05	1.07
															ı		ΔΗ=	1.07	inches
			Final se	ttlemen	t	(k _{FHWA} *	ΔΗ)	1.07	x 0.50	=	0.53	inches						-	

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

- E.2.1 Wall 2 External Stability and Bearing Resistance
- E.2.2 Wall 2 Settlement Analysis at Abutment C
- E.2.3 Walls 1 & 3 Back to Back MSE Check
- E.2.4 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
- E.2.5 Walls 1 & 3 Settlements @ Sta.24+50 (19' Wall)
- E.2.6 Walls 1 & 3 Slope Stability @ Sta.24+50 (19' Wall)
- E.2.7 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
- E.2.8 Walls 1 & 3 Settlements @ Sta.22+50 (10' Wall)
- E.2.9 Walls 1 & 3 Slope Stability @ Sta.22+50 (10' Wall)
- E.2.10 Walls 1 & 3 Consolidation Settlement at Sta.23+50

I-95 Exressway/Opitz Blvd (Trial-03) Global Stability Sta 22+50

GSTABL7 v.2 FSmin=1.649 Safety Factors Are Calculated By The Modified Bishop Method

MSE Wall Calculations - Wall 1, Wall2, and Wall 3

- E.2.1 Wall 2 External Stability and Bearing Resistance
- E.2.2 Wall 2 Settlement Analysis at Abutment C
- E.2.3 Walls 1 & 3 Back to Back MSE Check
- E.2.4 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.24+50 (19' Wall)
- E.2.5 Walls 1 & 3 Settlements @ Sta.24+50 (19' Wall)
- E.2.6 Walls 1 & 3 Slope Stability @ Sta.24+50 (19' Wall)
- E.2.7 Walls 1 & 3 External Stability and Bearing Resistance @ Sta.22+50 (10' Wall)
- E.2.8 Walls 1 & 3 Settlements @ Sta.22+50 (10' Wall)
- E.2.9 Walls 1 & 3 Slope Stability @ Sta.22+50 (10' Wall)

E.2.10 Walls 1 & 3 - Consolidation Settlement at Sta.23+50

Whitman, Requardt & Associates, LLP

Engineers Architects Environmental Planners

Est. 1915

Elastic Settlement for Embankment
Hough Method Settlement Estimations

Calc skk
Chk: scb

Sheet 2 of 2

Version: V.2.00

Project: Opitz Blvd Express Lane

Location: T-Ramp

Subject:

Subject: T-Ramp Loading mostly soil

Stress Destribution for Two A	reas		
	Area 1	Area 2	Area 3
Multiplier		1 1	0
Height of Embankment	1	0 10	0
Soil Unit Weight	11	5 115	0
Rectangular Loading Width	B ₁ 1	18	0
Triangular Loading Width	B ₂	0	0
FHWA Recommended factor for fir	nal settlement:	k _{FHWA}	0.5
Default Min. Value for B ₂ = 1E-10			

 $\Delta\sigma_z = \frac{q_o}{\pi} \left[\left(\frac{B_1 + B_2}{B_2} \right) (\alpha_1 + \alpha_2) - \frac{B_1}{B_2} (\alpha_2) \right]$

 $\Delta H = H \left(\frac{1}{C'}\right) \log_{10} \frac{p_o + \Delta p}{p_o}$

Settle	ment Ca	lculatio	ns:																
	L	ayer Dat	а				Angles (radians)			Influ	ence Fa	ctors	$q_0^{(a)}$	$q_0^{(b)}$	$q_0^{(c)}$			
Layer	Middle	Layer	Overbr.	Bear.	Area	ı (a)	Area	ı (b)	Area	ı (c)	Area(a)	Area (b)	Area (c)	1150	1150	0	Total	Settle	ments
No.	Depth	Thick.	Press.	Factor	B ₁	B ₂	B ₁	B ₂	B ₁	B ₂				q ₀ * I _z (c)	$q_0^* I_z^{(c)}$	$q_0^* I_z^{(c)}$	∆р	Per	Cumu.
	Z _{mid}	h _i	\mathbf{p}_0	C'	18.0	0.0	18.0	0.0	0.0	0.0				∆p ^(a)	∆p ^(b)	∆p ^(c)		Layer	
	(ft)	(ft)	(psf)		$\alpha_1^{(a)}$	$\alpha_2^{(a)}$	α ₁ ^(b)	$\alpha_2^{(b)}$	α ₁ ^(c)	$\alpha_2^{(c)}$	l _z ^(a)	l _z (b)	l _z ^(c)	(psf)	(psf)	(psf)	(psf)	(inch)	(inch)
1	1.5	3.0	172.5	7256	0.000	1.488	0.000	1.488	0.000	0.000	0.474	0.474	0.000	544.5	544.5	0.0	1089.1	0.00	0.00
2	7.5	9.0	885.0	94	0.000	1.176	0.000	1.176	0.000	0.000	0.374	0.374	0.000	430.4	430.4	0.0	860.9	0.34	0.34
3	16.5	9.0	1987.5	20752	0.000	0.829	0.000	0.829	0.000	0.000	0.264	0.264	0.000	303.4	303.4	0.0	606.7	0.00	0.34
4	23.0	4.0	2612.8	1951	0.000	0.664	0.000	0.664	0.000	0.000	0.211	0.211	0.000	243.1	243.1	0.0	486.2		
5	47.5	45.0	4146.5	1083	0.000	0.362	0.000	0.362	0.000	0.000	0.115	0.115	0.000	132.6	132.6	0.0	265.2	0.01	0.36
								ļ		ļ							ΔH=	0.36	inches
			Final se	ttlemen	t	(k _{FHWA} *	Δ <i>H</i>)	0.36	x 0.50	=	0.18	inches							

RW-3 Gravity Retaining Wall

E.3.1 VDOT RW-3 Specifications

- **E.3.2 DCP Friction Angle and Compactness**
- **E.3.3** AASHTO Bearing Capacity
- E.3.4 AASHTO Reduction Factor for Footing on Slope

EXPANSION JOINTS AT INTERVALS NOT EXCEEDING 90'.

* WATER STOPS TO BE ELASTOMERIC OR OTHER APPROVED MATERIAL. DIMENSIONS SHOWN ARE ABSOLUTE MINIMUM.

HEIGHT OF WALL "H" IN FEET	THICKNESS AT TOP "A" IN FEET	THICKNESS AT BASE B=.6H	COMPRESSION AT TOE LBS. PER SQ. FT.	AREA OF SECTION SQ. FT.
3	1'-0"	1'-95/8''	856	4.83
4	1'-0"	2'-4¾"	1141	7.43
5	1'-0"	3'-0"	1427	10.63
6	1'-0"	3'-71/4"	1712	14.43
7	1'-0"	4'-23/8"	1997	18.83
8	1'-0"	4'-95%''	2283	23.83
9	1'-0"	5'-4¾''	2568	29.43
10	1'-0"	6'-0"	2853	35.63
11	1'-1 1/4 "	6'-7 ¹ /4"	3139	42.98
12	1'-2 3/8 "	7'-23/8"	3424	51.03
13	1'-3 5/8 "	7'-9%"	3709	59.78
14	1'-4 3/4 "	8'-4¾''	3995	69.23
15	1'-6"	9'-0"	4280	79.38

CONCRETE GRAVITY RETAINING WALLS INFINITE SURCHARGE AND DECK SURCHARGE - LOADED

VIRGINIA DEPARTMENT OF TRANSPORTATION

SPECIFICATION REFERENCE

506

REV 8/07 401.02

RW-3 Gravity Retaining Wall

- E.3.1 VDOT RW-3 Specifications
- **E.3.2** DCP Friction Angle and Compactness
- **E.3.3** AASHTO Bearing Capacity
- E.3.4 AASHTO Reduction Factor for Footing on Slope

Test Hole: DCP-SE

Project:

I-95 Expressway / Opitz Blvd Woodbridge, VA

DCP No.

Calc by: skk 12/27/2021

DCP-SE

WRA# Test Date:

32175-000

Chk by: scb

DCP Weight Used: 8 kg (17.6 lb)

DCP Penetration Index (DPI) and SPT Results

Ref: MnROAD (1993), User guide to the DCP

Mn/DOT Office of Material Research and Engineering

SPT N and Friction Angle

AASHTO LRFD			
(Description b	oundaries mod	lified)	
$(N_1)_{60}$	Friction Ar		
	Min	Descrip.	
1	25°	30°	Very Loose
4	25°	30°	very Loose
5	27°	32°	Loose
10	27°	32°	Loose
11	30°	35°	Medium
30	30°	35°	Medium
31	35°	40°	Dense
50	35°	40°	Delise
51	38°	43°	Vary Danca
100	38°	43°	Very Dense

Log - Log Straight Line

	Point-1	Point -2	
I _{SPT} (y)	3.0	10.0	m = 0.4767
I_{DCP} (x)	0.8	10.0	c = 0.5233

Overburden Corretion

Assumed soil Unit Wt. 120.0

 $N_1 = C_N N$

 $C_N = [0.77 \log_{10} (40/\sigma'_{\nu})], \text{ and } C_N < 2.0$

	<u>Equation</u>	Log ₁₀ (I _{SPT})	= <i>m</i> Log ₁₀ (<i>I</i>	_{DCP})+ <i>C</i>			Wt. Factor	2			
	Sample			Estimation of	of Equivalent	SPT N		Surcharge	Overburden	Friction An	gle ϕ
	Mid Depth	DCP	I _{DCP}	Log ₁₀ (I _{DCP})	Log ₁₀ (I _{SPT})	I _{DCP}	SPT N	Pressure	Corrected N ₁	AASHTOTable	e 10.4.6.5.4-1
	(ft.)	blows/6"	mm/blow			mm/blow	blows/12"	(ksf)	blows/12"	Min	Max
1	0.50	2	152.4	2.183	1.564	36.6	8	0.060	16	30°	35°
2	1.50	3	101.6	2.007	1.480	30.2	10	0.180	18	30°	35°
3	2.50	3	101.6	2.007	1.480	30.2	10	0.300	16	30°	35°
4	3.50	3	101.6	2.007	1.480	30.2	10	0.420	15	30°	35°
5	4.50	3	101.6	2.007	1.480	30.2	10	0.540	14	30°	35°
6	5.50	4	76.2	1.882	1.420	26.3	11	0.660	15	30°	35°
7	6.50	7	43.5	1.639	1.305	20.2	15	0.780	19	30°	35°
8	6.75	6	50.8	1.706	1.336	21.7	14	0.810	18	30°	35°
9										·	
10											

Notes: For lighter hammer weight, a factor 2 is used per ASTM D6951.

RW-3 Gravity Retaining Wall

- E.3.1 VDOT RW-3 Specifications
- **E.3.2 DCP Friction Angle and Compactness**
- E.3.3 AASHTO Bearing Capacity
- E.3.4 AASHTO Reduction Factor for Footing on Slope

Nominal Bearing Resistance Ver: V.03.00 Reference: AASHTO LRFD Date: Project & Structure Data: Project: I-95 Express Way /Opitz Blvd Structure: RW-3 Walls at SE Quadrant WRA #: 045893-001 Foundations for 5 ft wall Foundation: Calculated by: skk, 12/29/2021 Checked by: skk. 12/29/2021 Soil Parameters Foundatn Subgr. Soil Unit Wt. γ_{fs} Cohesion 0.0 psf C = 125.0 pcf Surcharge Soil Unit Wt. γ_{sur} Friction Ang. $\phi_f =$ 30.0 degree 125.0 pcf Soils above footing bearing are as competent as subgrade soils? Yes Foundation Dimensions Footing Width B= Footing Depth 5.00 ft $D_f =$ 5.0 ft 40.0 ft G.Water Depth 15.0 ft Footing Length D.,, = Foundation Loads: Unfactored Vert Load V= o.o kips Load Angle θ 0.0 deg Unfactored Horz.Load H= 0.0 kips Moment: Assumed Eccentricity: e_b (ft)= 0.0 (<0.8) ok e₁ (ft)= 0.0 (<6.7) ok Bearing Capacity Factors: $N_0 = e^{(\pi \tan \phi)} \tan^2(45^\circ + \phi/2)$ $N_c = (N_o - 1) \cot \Phi$ $N_{\sim} = 2 (N_{\alpha} + 1) \tan \Phi$ $N_c = 30.14$ $N_0 = 18.40$ $N_{\sim} = 22.40$ Effective Footing Dimensions: (Area reduction for assumed eccentricity) $B' = B - 2e_b = 5.0$ $L'=L-2e_1 = 40.0$ Footing Shape Correction Factors: For $\phi = 0$ $S_c = 1 + (B'/5L')$ S₂= 1.0 $S_{\alpha}=1$ For **φ** > 0 $S_c = 1 + (B'/L') (N_o/N_c)$ S~= 1 - 0.4 (B'/L') $S_n = 1 + (B'/L') \tan \phi$ 0.687 0.95 $S_q =$ 1.072 Groundwater Correction Factors 1.000 1.000 C_{w-/}= Depth Correction Factor: Competent surcharge soils: Yes Load Inclination Factors: 1 000 1 000 1 000 Nominal Bearing Resistance: $q_n = c (N_c S_c i_c) + \gamma_{sur} D_f (N_a S_a d_a i_a) C_{wa} + 0.5 \gamma_{fs} B' (N_w S_w i_w) C_{ww}$ ASD FOS 3.0 C term 0.00 a term 12.33 B term 6.65 LRFD Фq 0.45 q_n = 18.98 ksf 6.33 ksf 8.54 ksf q_{factored} Notes: Correction value for slope = aall 4.37 ksf

RW-3 Gravity Retaining Wall

- E.3.1 VDOT RW-3 Specifications
- **E.3.2 DCP Friction Angle and Compactness**
- **E.3.3** AASHTO Bearing Capacity
- E.3.4 AASHTO Reduction Factor for Footing on Slope

Reduction Coefficients (RC BC) - Footing on Slope

Coding: skk 01/01/22 Ver.01

Project: I-95 Expressway at Opitz Blvd

Sheet 1 of 3

Ref: Table 10.6.3.1.2c-2, AASHTO LRFD Bridge Design Spec.

Validation: gk 01/03/22

WRA W/O # 45893-001 Calc: skk 01/03/22

Chk: gk 01/03/22

Input

Slope Angle:

(Range 20 to 30 deg)

X = 47.00 ft.Y = 22.00 ft.

 $\beta = 25.1^{\circ}$

Internal Friciton Angle: (Range 20 to 40 deg)

φ = 30.0°

Interpolation Range

Subject: RW-3 Wall Foundation, Max Height Case, Southeast Quadrent

ф=	30.0°	B/H =	0.13
$\mathbf{\phi}_1$ =	30°	[B/H] ₁ =	0.20
ф ₂ =	30°	[B/H] ₂ =	0.20
β =	25.1°	b/B =	1.86
β ₁ =	20°	[b/B] ₁ =	1.25
β ₂ =	30°	$[b/B]_2 =$	2.50

Schematic

Foundation Dimensions

 $b = 8.00 \, ft.$

 $B = 4.30 \, \text{ft.}$

 $H = 32.00 \, \text{ft.}$

Interpolation

	VLOOKUP C	ode Multiplie	r			
	1.00E+04	1.00E+03	1.00E+03	1.00E+00	VLOOKUP	
Final $RC_{\rm BC}$	ф=30	ß=25	B/H=0.13	b/B=1.86	Code	RC_{BC}
	ф=30	ß=20	B/H=0.2	b/B=1.25	320201.25	0.72
0.69	0.69	0.83	0.83	b/B=2.50	320202.50	0.94
			B/H=0.2	b/B=1.25	320201.25	0.72
			0.83	b/B=2.50	320202.50	0.94
		ß=30	B/H=0.2	b/B=1.25	330201.25	0.38
		0.56	0.56	b/B=2.50	330202.50	0.74
			B/H=0.2	b/B=1.25	330201.25	0.38
			0.56	b/B=2.50	330202.50	0.74
	ф=30	ß=20	B/H=0.2	b/B=1.25	320201.25	0.72
	0.69	0.83	0.83	b/B=2.50	320202.50	0.94
			B/H=0.2	b/B=1.25	320201.25	0.72
			0.83	b/B=2.50	320202.50	0.94
		ß=30	B/H=0.2	b/B=1.25	330201.25	0.38
		0.56	0.56	b/B=2.50	330202.50	0.74
			B/H=0.2	b/B=1.25	330201.25	0.38
			0.56	b/B=2.50	330202.50	0.74
Interpolation direction	<	<	<			<

Typical Section

Section at Sta.70+25

Results: Final RC_{BC} 0.69

Notes:

Coefficients for (B/H)=0.2 are assumed for cases (B/H)<0.2.

Purely Cohesionless soils (c'=0)

Friction angle (ϕ) should be greater than slope angle.

10-74

AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, EIGHTH EDITION, 2017

Table 10.6.3.1.2c-2—Reduction Coefficients (RC_{BC}) for Footings Placed Adjacent to Slopes Composed of either Purely Cohesive Soils, ($\phi = 0$); Purely Cohesionless Soils (c'=0); or Soils with both Cohesive and Cohesionless Strength Components

					=10°				=20°				=30°			β=	=40°	
1 (0)	-	1	-		Ns				Vs				Vs			1	Vs	
φ(°)	B/H	b/B	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c¹=0
	1	0	0.89	0.88	0.88	0.00	0.89	0.87	0.86	0.00	0.82	0.81	0.78	0.00	0.76	0.73	0.69	0.00
1		0.5	0.97	0.96	0.96	0.00	0.95	0.93	0.91	0.00	0.92	0.89	0.87	0.00	0.86	0.83	0.76	0.00
	0.2	1.25	1.00	0.99	0.98	0.00	1.00	0.98	0.96	0.00	1.00	0.97	0.95	0.00	0.95	0.91	0.81	0.00
		2,5	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	0.97	0.84	0.00
		5 10	1.00	1.00	1,00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.89	0.00
		0	0.92	0.91	0.88	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0.5	0.92	0.91	0.89	0.00	0.85	0.82	0.76	0.00	0.77	0.73	0.63	0.00	0.71	0.65	0.52	0.00
		1.25	0.98	0.93	0.89	0.00	0.92	0.89	0.78	0.00	0.87	0.84	0.68	0.00	0.83	0.76	0.56	0.00
	0.5	2.5	1.00	1,00	1.00	0.00	1.00	1.00	0.80	0.00	0.94	0.92	0.71	0.00	0.90	0.83	0.58	0.00
		5	1.00	1.00	1.00	0.00	1.00	1.00	0.86	0.00	1.00	1.00	0.79	0.00	1.00	0.93	0.68	0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.93	0.00	1.00	1.00	0.88	0.00
0		0	0.87	0.84	0.75	0.00	0.87	0.79	0.56	0.00	0.80	0.66	0.42	0.00	0.73	0.56	0.33	0.00
		0.5	0.95	0.91	0.82	0.00	0.92	0.83	0.65	0.00	0.86	0.73	0.42	0.00	0.73	0.67	0.40	0.00
		1.25	0.97	0.94	0.83	0.00	0.95	0.87	0.67	0.00	0.92	0.73	0.50	0.00	0.89	0.76	0.46	0.00
	1	2.5	1.00	0.98	0.88	0.00	1.00	0.97	0.77	0.00	1.00	1.00	0.84	0.00	0.99	0.70	0.63	0.00
		5	1.00	1.00	0.95	0.00	1.00	1.00	0.90	0.00	1.00	1.00	0.84	0.00	1.00	1.00	0.83	0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
- 1		0	0.87	0.79	0.57	0.00	0.87	0.71	0.44	0.00	0.81	0.62	0.35	0.00	0.75	0.56	0.29	0.00
- 1	1	0.5	0.97	0.93	0.65	0.00	0.94	0.79	0.49	0.00	0.89	0.72	0.42	0.00	0.85	0.69	0.37	0.00
	2	1.25	0.99	0.98	0.73	0.00	0.99	0.91	0.57	0.00	0.98	0.86	0.51	0.00	0.96	0.83	0.47	0.00
	*	2.5	1.00	0.99	0.82	0.00	1.00	0.96	0.69	0.00	1.00	0.95	0.64	0.00	1.00	0.95	0.61	0.00
- 1		5	1.00	1.00	0.96	0.00	1.00	1.00	0.87	0.00	1.00	1.00	0.84	0.00	1.00	1.00	0.81	0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.90	0.89	0.90	0.68	0.75	0.73	0.72	0.21	0.62	0.59	0.56	0.00	0.52	0.49	0.45	0.00
		0.5	0.78	0.87	0.86	0.70	0.74	0.76	0.74	0.40	0.63	0.65	0.63	0.00	0.52	0.56	0.52	0.00
	0.2	1.25	0.86	0.92	0.92	0.82	0.83	0.84	0.83	0.70	0.74	0.75	0.74	0.00	0.63	0.66	0.63	0.00
- 1		2.5	0.96	0.98	0.99	0.83	0.95	0.94	0.95	0.84	0.90	0.89	0.90	0.00	0.78	0.81	0.78	0.00
- 1		5	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	0.96	0.98	0.96	0.00
- 1	_	10	0.86	1.00	1.00	0.84	1.00	1.00	1.00	0.81	1,00	1.00	1.00	0.00	0.99	0.99	1.00	0.00
- 1	7	0.5	0.86	0.86	0.84	0.60	0.73	0.70	0.67	0.22	0.62	0.56	0.51	0.00	0.52	0.45	0.39	0.00
	- 1	1.25	0.88	1.00	0.92	0.71	0.80	0.80	0.79	0.40	0.70	0.68	0.67	0.00	0.62	0.59	0.56	0.00
- 1	0.5	2.5	0.97	1.00	1.00	0.82	0.85	0.88	0.86	0.70	0.76	0.75	0.75	0.00	0.68	0.66	0.64	0.00
- 1	- 1	5	1.00	1.00	1.00	0.84	1.00	0.97	0.98	0.84	0.90	0.94	0.96	0.00	0.84	0.86	0.87	0.00
	- 4	10	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
20		0	0.85	0.82	0.78	0.58	0.72	0.64	0.58	0.81	0.61	0.50	0.42	0.00	1.00	1.00	1.00	0.00
1	- 1	0.5	0.84	0.91	0.91	0.71	0.81	0.80	0.79	0.46	0.70	0.69	0.67	0.00	0.52	0.39	0.30	0.00
		1.25	0.87	0.95	0.96	0.82	0.85	0.85	0.85	0.73	0.76	0.76	0.75	0.00	0.71	0.70	0.69	0.00
- 1	1	2.5	0.97	1.00	1.00	0.82	0.95	0.97	0.98	0.83	0.90	0.94	0.97	0.00	0.86	0.89	0.09	0.00
- 1	- 1	5	1.00	1.00	1.00	0.83	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	0.83	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.90	0.90	0.90	0.58	0.87	0.86	0.84	0.33	0.84	0.81	0.78	0.00	0.81	0.77	0.74	0.00
		0.5	0.90	0.93	0.93	0.70	0.88	0.88	0.87	0.54	0.84	0.83	0.81	0.00	0.84	0.82	0.81	0.00
	2	1.25	0.92	0.97	0.99	0.81	0.90	0.92	0.92	0.77	0.86	0.86	0.86	0.00	0.85	0.85	0.84	0.00
	-	2.5	0.98	1.00	1.00	0.81	0.97	0.98	1.00	0.81	0.93	0.97	1.00	0.00	0.92	0.96	0.99	0.00
		5	1.00	1.00	1.00	0.82	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	0.82	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00

SECTION 10: FOUNDATIONS

10-75

Table 10.6.3.1.2c-2 (cont.)

				β=				β=					30°				40°	
				Λ					S			Λ					Vs	
φ(°)	B/H	b/B	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c'=0
		0	0.93	0.92	0.91	0.76	0.65	0.64	0.63	0.39	0.51	0.50	0.48	0.11	0.40	0.37	0.36	0.00
		0.5	0.74	0.81	0.80	0.75	0.70	0.66	0.65	0.50	0.57	0.52	0.49	0.21	0.47	0.42	0.39	0.00
	0.2	1.25	0.78	0.85	0.86	0.86	0.74	0.73	0.72	0.72	0.63	0.60	0.59	0.38	0.54	0.50	0.47	0.00
	0	2.5	0.84	0.92	0.93	0.99	0.81	0.82	0.83	0.94	0.72	0.73	0.74	0.74	0.64	0.62	0.61	0.00
		5	0.95	1,00	1.00	1.00	0.93	0.98	1.00	1.00	0,88	0.95	1.00	0.97	0.80	1.00	0.87	0.00
		10	1,00	1.00	1,00	1.00	0.63	0.59	0.55	0.36	0.50	0.43	0.39	0.13	0.39	0.32	0.27	0.00
		0	0.79	0.79	0.78	0.70	0.63	0.59	0.70	0.51	0.58	0.56	0.54	0.13	0.39	0.46	0.43	0.00
		0.5	0.76	0.87	0.87	0.74	0.72	0.73	0.76	0.72	0.63	0.62	0.61	0.45	0.49	0.52	0.50	0.00
	0.5	1.25 2.5	0.79	0.83	1.00	0.99	0.73	0.75	0.90	0.72	0.03	0.78	0.80	0.80	0.67	0.70	0.71	0.00
		5	0.87	1.00	1.00	1.00	0.95	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.85	0.94	0.98	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
30		0	0.79	0.75	0.73	0.67	0.63	0.53	0.49	0.41	0,55	0.41	0.35	0.24	0,48	0,33	0.26	0.00
	1	0.5	0.78	0.87	0.89	0.74	0.75	0.74	0.74	0.51	0.64	0.62	0.60	0.35	0.59	0.56	0.54	0.00
		1.25	0.81	0.90	0.91	0.88	0.78	0.78	0.78	0.72	0.68	0.67	0.66	0.58	0.64	0.62	0.61	0.00
	1	2,5	0.88	0.99	1.00	0.96	0.85	0.90	0.92	0.95	0.78	0.81	0.84	0.88	0.75	0.78	0.80	0.00
		5	0.97	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.89	0.98	1.00	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		0	0.88	0.88	0.87	0.65	0.87	0,85	0.83	0.48	0.85	0.82	0.80	0.38	0.83	0.80	0.76	0.00
		0.5	0.89	0.91	0.91	0.75	0.89	0.89	0.87	0.58	0.88	0.86	0.84	0.51	0.87	0.85	0.82	0.00
	2	1.25	0.90	0.92	0.93	0.88	0.90	0.90	0.90	0.75	0.89	0.87	0.87	0.70	0.89	0.87	0.86	0,00
		2.5	0.97	1.00	1.00	1.00	0.96	0.97	0.98	0.98	0.92	0.94	0.96	0.95	0.91	0.92	0.94	0.00
		5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		0	0.69	0.69	0.69	0.78	0.51	0.48	0.47	0.37	0.37	0.33	0.30	0.16	0.27	0.23	0.20	0.05
		0.5	0.65	0.73	0.71	0.74	0.60	0.55	0.53	0.38	0.64	0.38	0.35	0.25	0.34	0.29	0.25	0.13
	0.2	1.25	0.68	0.77	0.75	0.86	0.63	0.60	0.58	0.55	0.74	0.44	0.42	0.39	0.39	0.34	0.31	0.25
1		2.5	0.72	0.83	0.84	1.00	0.68	0.68	0.68	0.76	0.87	0.53	0.53	0.62	0.45	0.43	0.41	0.48
		5	0.80	0.93	0.95	1.00	0.76	0.82	0.85	1.00	1.00	0.72 1.00	0.76 1.00	1.00	0.57	0.61	1.00	1.00
		10	0.94	1.00	1.00	0.69	0.91	0.45	0.43	0.35	0.36	0.30	0.26	0.17	0.76	0.93	0.17	0.07
		0.5	0.67	0.69	0.67	0.73	0.63	0.62	0.43	0.46	0.47	0.44	0.41	0.25	0.39	0.35	0.32	0.09
		1.25	0.08	0.82	0.84	0.73	0.65	0.65	0.66	0.60	0.51	0.49	0.47	0.40	0.43	0.41	0.39	0.18
	0.5	2.5	0.76	0.92	0.96	1.00	0.72	0.77	0.80	0.81	0.59	0.62	0.63	0.60	0.54	0.56	0.56	0.37
		5	0.70	1.00	1.00	1.00	0.81	0.91	0.94	1.00	0.71	0.82	0.88	1.00	0.67	0.77	0.83	0.84
1		10	0.96	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.89	1.00	1.00	1.00	0.86	1.00	1.00	1.00
40		0	0.69	0.64	0.62	0.70	0.63	0.48	0.43	0.45	0.58	0.39	0.33	0.32	0.54	0,33	0.27	0.24
		0.5	0.77	0.81	0.82	0.74	0.75	0.73	0.72	0.49	0.71	0.66	0.62	0.38	0.68	0.62	0.57	0.30
		1.25	0.78	0.84	0.85	0.84	0.77	0.76	0.75	0.64	0.73	0.69	0.66	0.55	0.71	0.66	0.63	0.48
	1	2.5	0.83	0.92	0.95	1,00	0.81	0.85	0.87	0.85	0.76	0.78	0.79	0.76	0.75	0.76	0.77	0.72
1		5	0.89	1.00	1.00	1.00	0.87	0.95	0.98	1.00	0.80	0.90	0.95	1.00	0.80	0.89	0.94	1.00
		10	0.98	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.93	1.00	1.00	1.00
1		0	0.93	0.92	0,89	0.45	0.92	0.90	0.87	0.60	0.91	0.88	0.84	0.53	0.89	0,85	0.81	0.47
I		0.5	0.93	0.95	0.93	0.76	0.93	0.92	0.90	0.65	0.92	0.89	0.87	0.64	0.92	0.89	0.86	0.60
I	2	1.25	0.93	0.95	0.94	0.86	0.93	0.93	0.92	0.78	0.93	0.91	0.89	0.74	0.93	0.90	0.88	0.74
		2.5	0.94	0.99	1.00	1.00	0.94	0.98	0.98	0.92	0.94	0.97	0.97	0.87	0.94	0.96	0.96	0.88
1		5	0.95	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.96	1.00	1.00	1.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1,00	1.00	1.00

Soldier Pile and Lagging (SPL) Wall

E.4.1 Section and Embedment Design

E.4.2 Top Deflection Estimations

Project: Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Location: West Approach WRA No. 45893-001

Calc by: skk 2021/12/14 Chk by:

Soldier Pile Wall Design

Simplified Method - Cantilever / Single Anchor

Design Type:	Sola	lier Pile De	sign
Wall Type:		Cantilever	
Design Methodology			LRFD
Load & Resistance Factors	ASD	LRFD	Selected
Active Earth Pr. K_a (Υ_{EH})	1.00	1.50	1.50
Passive Earth Pr. K_p (Φ)	1.00	0.75	0.75
Live Load Surcharge $(\Upsilon_{ t LS})$	1.00	1.75	1.75
Earth Load Surcharg∈ (Y _{LS})	1.00	1.50	1.50
Embedment FOS -Teng Method	1.40	1.20	1.20

	Wall H= 12.0 ft	Rqd Zx 126 in^3
	Results oĸ	Solve
ho	Final Embedment=1.20 Do	23.92 ft
	Pile Tip Elevation:	179.08 ft
	Factored Anchor Force:	N/A
	Factored Bending Moment:	525 ft-k/pile
	Do = 19.930 0	EL 183.07
	Unit Wt. of Water (pcf)	62.4

Version 05.00 Coded S Kesavan 05/28/15, Reformatted Feb.202

Geometry: Top of Wall / Anchor/ Top of Soil Elevations and Angles

E.1 Top of wall (>soil-1) EL 215.00 ft (Should be greater than or equal to top of Layer-1 elevation)

Dredge Side (Left / Low Side): Retained Side (Right / High Side):

E.3 Top of Dredge Line EL EL 203.00 ft E.2 Top of Retained (Soil-1) EL 215.00 ft

(Top of Layer-5 elevation) E.4 Anchor /Raker EL ft

E.5 Water on Dredge Side EL 181.00 ft E.6 Water-Retained Side EL 181.00 ft

Geometry: Pile Spacing and Wall & Retained Soil Angles

Pile Spacing s 6.00 ft Pile/Hole Dia. (b) 14.0 inch Wall Face Angle θ = 90.0° (For Sheet Pile Wall Design, s and b assumed at 1.0 ft) Ret. Slope Angle: β = 0.0°

Is Special Loading Widths Required below dredge? No (may required for secant piles)

Below Dredge Loading Widths: Active side $s_w = 1.00$ ft Passive Side $s_p = 3.50$ ft

Soil Parameters				Above	Dredge			Below	Dredge	
			Soil Layers above dredge: 1			Soil Layers below dredge:			3	
Soil Layer ID	1	2	3	4	5	6	7	8		
Layer top EL		(ft)	215.00				203.00	190.00	185.00	
Layer Soil Type:		sand/ clay	Sand				Sand	Sand	Sand	
Total unit Weight	γi	(pcf)	120.0				120.0	125.0	125.0	
Friction Angle	фі	degree	30.0°				30.0°	34.0°	38.0°	
Wall Friction Angle	δί	degree	0.0°				0.0°	0.0°	0.0°	
Cohesion	Ci	(psf)	0.0				0.0	0.0	0.0	
Selected Pressure Coef	f: (Yes	/No)	No				No	No	No	
Activ/At-rest Earth Pres	ssure (Coeff. Ka								
Passive Earth Pressure	><	><	><							
Check: Layer botto	203.00				190.00	185.00	Last			

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Soldier Pile Design

West Approach

45893-001

skk 2021/12/14

Surcharge Loads: (Lat. Pressure from equivalent soil column - dependent on Ka/Ko)											
Dead Loads (Vertical):	$q_{\text{sur-D}}$	0.000 ksf			Live Loads (Vertical): q _{sur-L}			0.250	ksf		
Dredge side Mud surcharge		q _{sur-D}	0.500	ksf	(not included yet)						
Lateral Load from Special Surcharge: (Lat. Pressure from Elastic solutions -not dependent on Ka/Ko)											
Single Horizontal force:	Q spe	0.000	0.000 kips/LF Elevation -9.000 ft				ft				
Distributed Horizontal Press	ure:	Define spe	ecial surcha	arge up to	5 boxes:	Number of	of Boxes	0			
No. of Boxes											
Elev (ft) From	14.00						Note: Dre	dge @			
To	4.00	-6.00					EL	203.00			
Pressure (psf)	0.0	0.0									

Input Parameter Sketch

Raker

0 kips

@

EL -9.5

Input Parameter Sketch

Dimension Diagram:

Soldier Pile Design

West Approach

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

45893-001

skk 2021/12/14

Calculations				WT=	2			
	tration dep	th below d	redge leve	el)	Trial P	ile Tip EL	183.07	ft
s (ft)= 6.00 b (ft)= 1.17	S_W (ft) =	1.17	$s_p(ft) =$	3.50		Sp=	3.50	ft
Total Retained above Dredge H_R =	12.00	ft	Ar	nchor Heigh	nt above Di	redge L _A =	-203.00	ft
L _{wR} = -22.00 ft			$L_{wL} =$	-22.00	ft	$L_x =$	-183.07	ft
						185.00		
Soil ID	1	2	3	4	5	6	7	8
Layer top EL (ft)	215.00				203.00	190.00	185.00	
Layer Bottom EL (ft)	203.00				190.00	185.00	183.07	
Right side Water EL (H) (ft)	181.00				181.00	181.00	181.00	
Right Water Condition (dry/wet/mixed)	Dry				Dry	Dry	Dry	
Left side Water EL (L) (ft)					181.00	181.00	181.00	
Left Water Condition (dry/wet/mixed)					Dry	Dry	Dry	
Right Side Layer Thicknesses								
Thickness -Total H _i (ft)	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00
Thickness -Dry H _{iD} (ft)	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00
Thickness -Wet H _{iW} (ft)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Left Side Layer Thicknesses								
Thickness -Total					13.00	5.00	1.93	0.00
Thickness -Dry					13.00	5.00	1.93	0.00
Thickness -Wet					0.00	0.00	0.00	0.00
Layer Parameters	1	2	3	4	5	6	7	8
Total unit Weight γ_i (ksf)	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000
Total unit Weight γ_{ib} (ksf)	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000
Active EP Coef k _a	0.333	0.000	0.000	0.000	0.333	0.283	0.238	0.000
Passive EP Coef k _p					3.039	3.522	4.183	0.000
Cos 8	1.000	0.000	0.000	0.000	1.000	1.000	1.000	0.000
Load Factor for Ka	1.50	0.00	0.00	0.00	1.50	1.50	1.50	0.00
Resistance Factor for Kp	0.75	0.00	0.00	0.00	0.75	0.75	0.75	0.00
Factored Active EP Coef. Ka	0.500	0.000	0.000	0.000	0.500	0.425	0.357	0.000
Factored Passive EP Coef. Kp	0.00	0.00	0.00	0.00	2.279	2.642	3.137	0.000
y to layer top (ft)	31.93	0.00	0.00	0.00	19.93	6.93	1.93	0.00
Loading Width - Active Side (ft)	6.00	0.00	0.00	0.00	1.17	1.17	1.17	0.00
Loading Width - Passive Side (ft)					3.50	3.50	3.50	0.00

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Soldier Pile Design 45893-001

West Approach skk 2021/12/14

Moment about Pile Tip (F*y) - Driving Moments Retained Side: Soil-1 (i = 1) Active Above Dredge EL k_{ai} = 0.333 Υ_{EH} = 1.50 $Cos \delta$ = 1.000 K_{Ai} = 0.499 Loading w= s 6.00 ft y to layer top: 31.93 ft Geostatic Pressurre g_i : Layer I = 1 Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6 Layer-7 Layer-8 Dry - H _{iD} 12.00 0.00 0.00 0.00 5.00 1.93 0.00 Dry γ 0.120 0.000 0.000 0.120 0.125 0.125 0.000	F*y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Loading w= s 6.00 ft y to layer top: 31.93 ft Geostatic Pressurre g_i : Layer I = 1 Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6 Layer-7 Layer-8 Dry - H_{iD} 12.00 0.00 0.00 0.00 13.00 5.00 1.93 0.00 Dry γ 0.120 0.000 0.000 0.000 0.120 0.125 0.125 0.000	
Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6 Layer-7 Layer-8 Dry - H _{iD} 12.00 0.00 0.00 0.00 13.00 5.00 1.93 0.00 Dry γ 0.120 0.000 0.000 0.120 0.125 0.125 0.000	
Dry - H _{iD} 12.00 0.00 0.00 0.00 13.00 5.00 1.93 0.00 Dry γ 0.120 0.000 0.000 0.120 0.125 0.125 0.000	
Dry γ 0.120 0.000 0.000 0.120 0.125 0.125 0.000	
Wet - H _{iW} 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Wet γ _b 0.058 0.000 0.000 0.000 0.058 0.063 0.063 0.000	
Sum	
$g_{i-top} = 0.000$ $H_{iD} = 12.00$ ft $H_{iW} = 0.00$ ft	
$g_{i-water} = 1.440$ $\gamma_i = 0.1200$ kcf $\gamma_{ib} = 0.0576$ kcf	
$g_{i-bottom} = 1.440$ $p_{iD-R} = 0.000$ ksf/LF $p_{iD-T} = 0.719$ ksf/LF	
$p_{iW-R} = 0.719$ ksf/LF $p_{iW-T} = 0.000$ ksf/LF	
Dry- Rectangular: $P_{iD-R} = 0.0000 \text{ kips/w}$ $y=25.93$ 0.00	0.00
Dry- Trangular: $P_{iD-T} = 25.8936 \text{ kips/w}$ $y=23.93$ 25.89	619.65
Wet-Rectangular: $P_{iW-R} = 0.000 \text{ kips/w}$ $y=19.93$ 0.00	0.00
Wet-Trangular: $P_{iW-T} = 0.00 \text{ kips/w}$ $y=19.93$ 0.00	0.00
Retained Side: Soil-2 (i = 2) Active Above Dredge EL	
$k_{ai} = 0.000$ $\Upsilon_{EH} = 1.50$ $\cos \delta = 0.000$ $K_{Ai} = 0.000$	
Loading w= b 0.00 ft y to layer top: 0.00 ft	
Geostatic Pressurre g_i : Layer $I = 2$	
Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6 Layer-7 Layer-8	
Dry - H _{iD} 12.00 0.00 0.00 0.00 13.00 5.00 1.93 0.00	
Dry γ 0.1200 0.0000 0.0000 0.0000 0.1200 0.1250 0.1250 0.0000	
Wet - H _{IW} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Wet γ _b 0.0576 0.0000 0.0000 0.0576 0.0626 0.0626 0.0000	
Sum 1.440	
$g_{i-top} = 1.440$ $H_{iD} = 0.00$ ft $H_{iW} = 0.00$ ft	
$g_{i-water} = 1.440$ $\gamma_i = 0.0000$ kcf $\gamma_{ib} = 0.0000$ kcf	
$g_{i-bottom} = 1.440$ $p_{iD-R} = 0.000$ ksf/LF $p_{iD-T} = 0.000$ ksf/LF	
p_{iW-R} = 0.000 ksf/LF p_{iW-T} = 0.000 ksf/LF	
Dry- Rectangular: $P_{iD-R} = 0.00 \text{ kips/w}$ $y=0.00$ 0.00	0.00
Dry- Trangular: $P_{iD-T} = 0.00 \text{ kips/w}$ $y=0.00$ 0.00	0.00

Wet- Recta	angular:	P _{iW-R} =	0.00	kips/w				y=0.00	0.00	0.00
Wet-Trang	gular:	P _{iW-T} =	0.00	kips/w				y=0.00	0.00	0.00
Retained S	Side: Soil-3	1	(i = 3)	Active	Above Dre	edge EL				
k _{ai} =	0.000	Υ_{EH} =	1.50	$\cos \delta =$	0.000	$K_{Ai} =$	0.000			
	ding w= b	0.00	ft		•	layer top:	0.00	ft		
Geostatic	i	J.		Layer I =				ı		
	Layer-1	Layer-2	Layer-3	Layer-4	Layer-5	Layer-6	Layer-7	Layer-8		
Dry - H _{iD}	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00		
Dry γ	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000		
Wet - H _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Wet γ _b	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000		
Sum	1.440	0.000								
$g_{i-top} =$			$H_{iD} =$		ft	$H_{iW} =$		ft		
g _{i-water} =			$\gamma_i =$	0.0000	kcf		0.0000	kcf		
$g_{i\text{-bottom}} =$	1.440		$p_{iD-R} =$	0.000	ksf/LF	$p_{iD-T} =$	0.000	ksf/LF		
			<i>p</i> _{<i>iW-R</i>} =	0.000	ksf/LF	$p_{iW-T} =$	0.000	ksf/LF		
Dry- Recta	ngular:	$P_{iD-R} =$	0.0000	kips/w				y=0.00	0.00	0.00
Dry- Trang	ular:	$P_{iD-T} =$	0.0000	kips/w				y=0.00	0.00	0.00
Wet- Recta	angular:	$P_{iW-R} =$	0.000	kips/w				y=0.00	0.00	0.00
Wet- Tranç	gular:	$P_{iW-T} =$	0.00	kips/w				y=0.00	0.00	0.00
Retained S	Side: Soil-4		(i = 4)	Active	Above Dre	edge EL				
k _{ai} =	0.000	$\Upsilon_{EH} =$		$\cos \delta =$	0.000	$K_{Ai} =$	0.000			
	ding w= b		ft		•	layer top:	0.00	ft		
Geostatic	i			Layer I =				ı		
	Layer-1	Layer-2	Layer-3	Layer-4	Layer-5	Layer-6	Layer-7	Layer-8		
Dry - H _{iD}	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00		
Dry γ	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000		
Wet - H _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Wet γ _b	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000		
Sum	1.440	0.000	0.000							
$g_{i-top} =$	1.440		H _{iD} =	0.00	ft	$H_{iW} =$		ft		
g _{i-water} =			$\gamma_i =$	0.0000	kcf		0.0000	kcf		
$g_{i\text{-bottom}} =$	1.440		$p_{iD-R} =$		ksf/LF	$p_{iD-T} =$		ksf/LF		
			$p_{iW-R} =$	0.000	ksf/LF	$p_{iW-T} =$	0.000	ksf/LF		
Dry- Recta	ngular:	$P_{iD-R} =$	0.0000	kips/w				y=0.00	0.00	0.00
Dry- Trang	ular:	$P_{iD-T} =$	0.0000	kips/w				y=0.00	0.00	0.00

▼▼∪に I\C∪し	angular:	$P_{iW-R} =$	0.000	kips/w				y=0.00	0.00	
Wet- Tran	Ü	P _{iW-T} =	0.00	•				y=0.00	0.00	
	3			'				,		
Retained :	Side: Soil-5		(i = 5)	Active	Below Dre	dge EL				
k _{ai} =	0.333	Υ_{EH} =	1.50	Cos δ=	1.000	K _{Ai} =	0.500			
Loa	iding w= b	1.17	ft		y to	layer top:	19.93	ft		
Geostatic	Pressurre g	I _{i-top} :		Layer I =	5					
	Layer-1	Layer-2	Layer-3	Layer-4	Layer-5	Layer-6	Layer-7	Layer-8		
Dry - H _{iD}	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00		
Dry γ	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000		
Wet - H _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Wet γ _b	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000		
Sum	1.440	0.000	0.000	0.000						
g _{i-top} =	1.440		H _{iD} =	13.00	ft	H _{iW} =	0.00	ft		
g _{i-water} =	3.000		$\gamma_i =$	0.1200	kcf	$\gamma_{ib} =$	0.0576	kcf		
g _{i-bottom} =			p _{iD-R} =	0.719	ksf/LF	$p_{iD-T} =$	0.779	ksf/LF		
			p _{iW-R} =	1.499	ksf/LF	p _{iw-T} =	0.000	ksf/LF		
Dry- Recta	ıngular:	$P_{iD-R} =$	10.9091					y=13.43	10.91	14
Dry- Trang	jular:	P _{iD-T} =	5.9091	kips/w				y=11.26	5.91	6
Wet- Rect	angular:	P _{iW-R} =	0.000	kips/w				y=6.93	0.00	
Wet- Tran	gular:	P _{iW-T} =	0.0000	kips/w				y=6.93	0.00	
Dotained										
retained.	Side: Soil-6		(i = 6)	Active	Below Dre	dge EL				
	Side: Soil-6 0.283	Υ _{EH} =		Active Cos δ=	Below Dre 1.000	edge EL K _{Ai} =	0.425			
k _{ai} =			1.50		1.000	· ·		ft		
k _{ai} = Loa	0.283	Υ _{EH} = 1.17	1.50 ft		1.000 y to	K _{Ai} =		ft		
k _{ai} = Loa	0.283 iding w= b	Υ _{EH} = 1.17	1.50 ft	Cos δ=	1.000 y to	K _{Ai} =		ft Layer-8		
k _{ai} = Loa Geostatic	0.283 Iding w= b Pressurre g	Υ _{EH} = 1.17 J _{i-top} :	1.50 ft	Cos δ= Layer I =	1.000 y to 6	K _{Ai} = layer top:	6.93	ı		
k _{ai} = Loa Geostatic Dry - H _{iD}	0.283 Iding w= b Pressurre g Layer-1	Υ _{EH} = 1.17 J _{i-top} : Layer-2	1.50 ft Layer-3	Cos δ= Layer I = Layer-4	1.000 y to 6 Layer-5	K _{Ai} = layer top: Layer-6	6.93 Layer-7	Layer-8		
k _{ai} = Loa Geostatic Dry - H _{iD} Dry γ	0.283 Iding w= b Pressurre g Layer-1 12.00	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00	1.50 ft Layer-3	Cos δ= Layer I = Layer-4 0.00	1.000 y to 6 Layer-5	K_{Ai} = layer top: Layer-6 5.00	6.93 Layer-7 1.93	Layer-8 0.00		
k _{ai} = Loa Geostatic Dry - H _{iD} Dry γ Wet - H _{iW}	0.283 Iding w= b Pressurre g Layer-1 12.00 0.1200	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000	1.50 ft Layer-3 0.00 0.0000	Cos δ= Layer I = Layer-4 0.00 0.0000	1.000 y to 6 Layer-5 13.00 0.1200	K_{Ai} = layer top: Layer-6 5.00 0.1250	6.93 Layer-7 1.93 0.1250	0.00 0.0000		
k_{ai} = Loa Geostatic Dry - H _{iD} Dry γ Wet - H _{iW} Wet γ_b	0.283 Iding w= b Pressurre g Layer-1 12.00 0.1200 0.00	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000	1.50 ft Layer-3 0.00 0.0000 0.00	Cos δ= Layer I = Layer-4 0.00 0.0000 0.000	1.000 y to 6 Layer-5 13.00 0.1200 0.00	K _{Ai} = layer top: Layer-6 5.00 0.1250 0.00	6.93 Layer-7 1.93 0.1250 0.00	0.00 0.0000 0.000		
k_{ai} = Loa Geostatic Dry - H _{iD} Dry γ Wet - H _{iW} Wet γ_b	0.283 Iding w= b Pressurre g Layer-1 12.00 0.1200 0.00 0.0576 1.440	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.000	$\cos \delta =$ Layer I = Layer-4 0.00 0.0000 0.0000 0.0000	1.000 y to 6 Layer-5 13.00 0.1200 0.00 0.0576	K _{Ai} = layer top: Layer-6 5.00 0.1250 0.00	6.93 Layer-7 1.93 0.1250 0.00	0.00 0.0000 0.000		
k_{ai} = Loa Geostatic Dry - H _{iD} Dry γ Wet - H _{iW} Wet γ_b Sum	0.283 ding w= b Pressurre g Layer-1 12.00 0.1200 0.0576 1.440 3.000	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.000 0.0000	Cos δ= Layer I = Layer-4 0.00 0.0000 0.000 0.0000 5.00	1.000 y to 6 Layer-5 13.00 0.1200 0.00 0.0576 1.560	K _{Ai} = layer top: Layer-6 5.00 0.1250 0.00 0.0626 H _{iW} =	6.93 Layer-7 1.93 0.1250 0.00 0.0626	0.00 0.0000 0.0000 0.0000		
$k_{ai} = \\ Loa$ $Geostatic$ $Dry - H_{iD}$ $Dry \gamma$ $Wet - H_{iW}$ $Wet \gamma_b$ Sum $g_{i-top} = \\ g_{i-water} = $	0.283 ding w= b Pressurre g Layer-1 12.00 0.1200 0.00 0.0576 1.440 3.000 3.625	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.0000 0.0000 H _{iD} =	Cos δ= Layer I = Layer-4 0.00 0.0000 0.0000 0.0000 5.00 0.1250	1.000 y to 6 Layer-5 13.00 0.1200 0.00 0.0576 1.560	K _{Ai} = layer top: Layer-6 5.00 0.1250 0.00 0.0626 H _{iW} =	6.93 Layer-7 1.93 0.1250 0.00 0.0626 0.00 0.0626	0.00 0.0000 0.0000 0.0000		
$k_{ai} = \\ Loa$ $Geostatic$ $Dry - H_{iD}$ $Dry \gamma$ $Wet - H_{iW}$ $Wet \gamma_b$ Sum $g_{i-top} = \\ g_{i-water} = $	0.283 ding w= b Pressurre g Layer-1 12.00 0.1200 0.00 0.0576 1.440 3.000 3.625	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.0000 H _{iD} = γ_i =	Cos δ= Layer I = Layer-4 0.00 0.0000 0.0000 0.0000 5.00 0.1250 1.274	1.000 y to 6 Layer-5 13.00 0.1200 0.0576 1.560 ft	K_{Ai} = layer top: Layer-6 5.00 0.1250 0.00 0.0626 H_{iW} = γ_{ib} =	6.93 Layer-7 1.93 0.1250 0.00 0.0626 0.00 0.0626 0.265	0.00 0.0000 0.0000 0.0000 ft kcf		
$\begin{aligned} & k_{ai} = \\ & Loa \\ Geostatic \\ & Dry - H_{iD} \\ & Dry \gamma \\ & Wet - H_{iW} \\ & Wet \gamma_b \\ & Sum \\ & g_{i-top} = \end{aligned}$	0.283 ding w= b Pressurre g Layer-1 12.00 0.1200 0.0576 1.440 3.000 3.625 3.625 1.53881	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.0000 H _{iD} = $\gamma_i = p_{iD-R} = 0$	Cos δ= Layer I = Layer-4 0.00 0.0000 0.0000 0.0000 5.00 0.1250 1.274 1.539	1.000 y to 6 Layer-5 13.00 0.1200 0.0576 1.560 ft kcf ksf/LF	K_{Ai} = layer top: Layer-6 5.00 0.1250 0.00 0.0626 H_{iW} = γ_{ib} = p_{iD-T} =	6.93 Layer-7 1.93 0.1250 0.00 0.0626 0.00 0.0626 0.265	0.00 0.0000 0.0000 0.0000 ft kcf ksf/LF	7.43	3
$k_{ai} = Loa$ Loa L	0.283 ding w= b Pressurre g Layer-1 12.00 0.1200 0.0576 1.440 3.000 3.625 3.625 1.53881 angular:	$\Upsilon_{EH} = 1.17$ J_{i-top} : Layer-2 0.00 0.0000 0.000 0.0000	1.50 ft Layer-3 0.00 0.0000 0.0000 $H_{iD} = \gamma_{i} = p_{iD-R} = p_{iW-R} = p_{iW-R} = p_{iW-R}$	Cos δ= Layer I = Layer-4 0.00 0.0000 0.0000 5.00 0.1250 1.274 1.539 kips/w	1.000 y to 6 Layer-5 13.00 0.1200 0.0576 1.560 ft kcf ksf/LF	K_{Ai} = layer top: Layer-6 5.00 0.1250 0.00 0.0626 H_{iW} = γ_{ib} = p_{iD-T} =	6.93 Layer-7 1.93 0.1250 0.00 0.0626 0.00 0.0626 0.265	0.00 0.0000 0.0000 ft kcf ksf/LF ksf/LF	7.43 0.77	

Wet- Trang	gular:	P _{iW-T} =	0.0000	kips/w				y=1.93		0.00	
Retained S	Side: Soil-7		(i = 7)	Active	Below Dre	edge EL					
k _{ai} =	0.238	Υ _{EH} =		Cos δ=	1.000	K _{Ai} =	0.357				
Loa	ding w= b	1.17	ft		y to	layer top:	1.93	ft			
Geostatic I	Pressurre g	l _{i-top} :		Layer I =	7						
	Layer-1	Layer-2	Layer-3	Layer-4	Layer-5	Layer-6	Layer-7	Layer-8			
Dry - H _{iD}	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00			
Dry γ	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000			
Wet - H _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Wet γ _b	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000			
ium	1.440	0.000	0.000	0.000	1.560	0.625					
$g_{i-top} =$	3.625		H _{iD} =	1.93	ft	$H_{iW} =$	0.00	ft			
g _{i-water} =	3.866		$\gamma_i =$	0.1250	kcf	γ_{ib} =	0.0626	kcf			
l _{i-bottom} =	3.866		$p_{iD-R} =$	1.294	ksf/LF	$p_{iD-T} =$	0.086	ksf/LF			
	1.38027		$p_{iW-R} =$	1.380	ksf/LF	$p_{iW-T} =$	0.000	ksf/LF			
Ory- Recta	ngular:	$P_{iD-R} =$	2.9145	kips/w				y=0.97		2.91	
Ory- Trang	ular:	$P_{iD-T} =$	0.0970	kips/w				y=0.64		0.10	
Net-Recta	angular:	$P_{iW-R} =$	0.000	kips/w				y=0.00		0.00	
Wet-Tran	gular:	$P_{iW-T} =$	0.0000	kips/w				y=0.00		0.00	
Retained S	Side: Soil-8		(i = 8)	Active	Below Dre	=					
	0.000	Υ_{EH} =		$\cos \delta =$	0.000	$K_{Ai} =$	0.000				
	ding w= b	0.00	ft		-	layer top:	0.00	ft			
ا Geostatic	و Pressurre		ı	Layer I =							
	Layer-1	-	,	-	Layer-5	,	Layer-7	Layer-8			
Dry - H _{iD}	12.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00			
Ory γ	0.1200	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000			
Wet - H _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Net γ _b	0.0576	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000			
Sum	1.440	0.000	0.000	0.000	1.560	0.625	0.241				
g _{i-top} =			H _{iD} =		ft	H _{iW} =	0.00	ft			
g _{i-water} =			•		kcf		0.0000	kcf			
j _{i-bottom} =			$p_{iD-R} =$		ksf/LF	<i>p</i> _{<i>iD-T</i>} =		ksf/LF			
	0	D	p _{iW-R} =		ksf/LF	p _{iW-T} =	0.000	ksf/LF		2.25	
Ory- Recta	Ü	P _{iD-R} =	0.0000	•				y=0.00		0.00	
Ory- Trang		P _{iD-T} =	0.0000	•				y=0.00		0.00	
Net-Recta	ŭ	P _{iW-R} =		kips/w				y=0.00		0.00	
Wet- Trang	gular:	$P_{iW-T} =$	0.0000	KIPS/W				y=0.00	-	0.00	
									L	-	
Retained S	Side : Wate	er Pressure	9							F	

$L_{wR} =$	-22.00	ft	sure/force a γ _w (kcf)=	0.0624	p_w	1 = γ w L _{wR}	0.0000	ksf/LF			
	•		redge, s =		ft			10.40			
			0.000	•				y=12.60		0.00	0.00
•		•	sure/force L		dge line:						
Rectangula			0.0000		Ct.	Б	10.00	C1			
			edge, $s_w = \frac{1}{2}$		π	D_0 =	19.93			0.00	0.00
			0.000		CI		00/04	y=9.97		0.00	0.00
Triangular:			L _{adj} =			γ _w =					
	•		ft			$D_0 + L_{adj} =$	-0.1291	KSI			
Loa	ding width	below dre	edge, $s_w = \frac{1}{2}$	1.1/	ft			0.40			
$P_{W1\text{-Bt}} = 0.5$	$p_{w1-bt}(D_c)$	+L _{adj}) W=	0.16	KIPS/LF				-y=0.69		0.16	-0.11
									_		
Aerial Surd	Ū		Above Dre	edge						F	F*y
Factored S	Ū			0.4075			0.4075				
q _{sur-D}	0.0000		q _{sur-L}	0.4375		q _{total} =					
Soil	Ka	Ω Ka	Total H	W	Cos δ	Q _i	y _{layer top}	Уi			
				(ft)		kips/w	(ft)	(ft)			
1	0.333	0.500	12.00	6.00	1.000	15.73	31.93	25.93		15.73	407.99
2	0.000	0.000	0.00	0.00	0.000	0.00	0.00	0.00		0.00	0.00
3	0.000	0.000	0.00	0.00	0.000	0.00	0.00	0.00		0.00	0.00
4	0.000	0.000	0.00	0.00	0.000	0.00	0.00	0.00		0.00	0.00
5	0.333	0.500	13.00	1.17	1.000	3.31	19.93	13.43		3.31	44.51
6	0.283	0.425	5.00	1.17	1.000	1.08	6.93	4.43		1.08	4.80
7	0.238	0.357	1.93	1.17	1.000	0.35	1.93	0.97		0.35	0.34
8	0.000	0.000	0.00	0.00	0.000	0.00	0.00	0.00		0.00	0.00
Special Sur	rcharge	Concentra	ted Load							F	F*y
L_S	-212.00	ft	$D_0 =$	19.93		Qs=	0.00	kips/LF			
	Loading W	idth, w= s	6.00 1	ft							
	$P_{s2} = Q_S W$	0.00	kips/pile					-y=192.07		0.00	0.00
Special Sur	rcharge	Elastic Sol	utions to Di	stributed I	Loads						
$D_{O} =$	19.93			Pile Bottor	m (z=0) ele	V.	183.07				
Loading W	idth:	Above dred	$dge, w= s_p$	6.00	ft	Below dr.	1.17				
	Dredge El		203.00		No of Boxe	es	0				
_	No. of Box	es	0	0	0	0	0				
	Elev (ft)	From	14.00	0.00	0.00	0.00	0.00				
_	LIEV (II)	То	4.00	-6.00	0.00	0.00	0.00				
	Pressure	(ksf)	0.0	0.0	0.0	0.0	0.0				
	Loading W	'idth	0.00	0.00	0.00	0.00	0.00				
	Length		10.00	6.00	0.00	0.00	0.00	Total			
	Load F	(kips)	0.00	0.00	0	0	0	0.00			
	у	(ft)	-174.07	-186.07	-183.07	-183.07	-183.07				
	F*y	ft-kips	0	0	0	0	0	0.00		0.00	0.00

									Total	74.57	1328.82
	about Pile				nts						
	ide: Layer 5		(i = 5)	Passive		.,					
I.	3.039		0.75	Cos δ=		$K_{Pi}=$	2.279				
	oading w= r		3.50		•	layer top:	19.93	ft			
Geostatic	Pressurre (٠.		Layer I =				ı			
	,	,	Layer-3			Layer-6	Layer-7	Layer-8			
Dry - L _{iD}	0.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00			
Dry γ	0.0000	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000			
Wet - L _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Wet γ _b	0.0000	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000			
Sum	0.000	0.000	0.000								
$g_{i-top} =$			$H_{iD} =$		ft	$H_{iW} =$		ft			
g _{i-water} =			$\gamma_i =$		kcf		0.0576				
$g_{i\text{-bottom}} =$			$p_{iD-R} =$		ksf/LF	$p_{iD-T} =$		ksf/LF			
	3.55563		$p_{iW-R} =$		ksf/LF	$p_{iW-T} =$	0.000	ksf/LF			
Dry- Recta	· ·	$P_{iD-R} =$		kips/w				y=13.43		0.00	0.00
Dry- Trang		$P_{iD-T} =$	80.891	•				y=11.26		80.89	911.13
Wet- Rect	angular:	$P_{iD-R} =$	0.000	•				y=6.93		0.00	0.00
Dry- Trang	gular:	$P_{iD-T} =$	0.000	kips/w				y=6.93		0.00	0.00
	ide: Layer 6		(i = 6)	Passive	1 000	K _{D:=}	2 642				
•	3.522		0.75	$\cos \delta =$	1.000	$K_{Pi}=$	2.642				
	oading w= r		3.50		-	layer top:	6.93	ft			
Geostatic	Pressurre (Layer I =				l			
	-	-	Layer-3	_	Layer-5	Layer-6	Layer-7	Layer-8			
Dry - L _{iD}	0.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00			
Dry γ	0.0000	0.0000	0.0000	0.0000							
Wet - L _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Wet γ _b	0.0000	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000			
Sum	0.000	0.000	0.000			Ц	0.00	tı .			
$g_{i-top} =$			H _{iD} =		ft kcf	H _{iW} =		ft kcf			
g _{i-water} =			$\gamma_i =$		kcf/LE			kcf/LE			
$g_{i\text{-bottom}} =$	5.77168		p _{iD-R} =		ksf/LF	p _{iD-T} =		ksf/LF			
Dry- Recta		D	<i>p</i> _{<i>iW-R</i>} = 72.113		ksf/LF	p _{iW-T} =	0.000	ksf/LF		72.11	319.49
Dry- Trang	· ·	$P_{iD-R} = P_{iD-T} =$	14.446	•				y=4.43 y=3.60		14.45	51.96
Wet- Rect	-	$P_{iD-T} = P_{iD-R} = P_{iD-R}$		kips/w kips/w				y=3.60 y=1.93		0.00	0.00
Dry- Trang	· ·	$P_{iD-T} =$		kips/w kips/w				y=1.93 y=1.93		0.00	0.00
ין אין אין אין אין אין אין	julai .	i iD-T =	0.000	KIP3/ W				y=1.93		0.00	0.00
Dredge Si	ide: Layer 7	•	(i = 7)	Passive							
k _{pi} =	4.183	Ω =	0.75	Cos δ=	1.000	K _{Pi} =	3.137				
Lo	oading w= r	min(s, 3b)	3.50	ft	y to	layer top:	1.93	ft			

Geostatic	Pressurre (9 _i		Layer I =	7				1	!
	Layer-1	Layer-2	Layer-3	Layer-4	Layer-5	Layer-6	Layer-7	Layer-8		
Dry - L _{iD}	0.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00		
Dry γ	0.0000	0.0000	0.0000	0.0000	0.1200	0.1250	0.1250	0.0000		
Wet - L _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Wet γ _b	0.0000	0.0000	0.0000	0.0000	0.0576	0.0626	0.0626	0.0000		
Sum	0.000	0.000	0.000	0.000		0.625				
$g_{i-top} =$			$H_{iD} =$		ft	$H_{iW} =$		ft		
g _{i-water} =			$\gamma_{i} =$	0.1250	kcf			kcf		
$g_{i\text{-bottom}} =$			$p_{iD-R} =$		ksf/LF	$p_{iD-T} =$		ksf/LF		
	7.61191	_	$p_{iW-R} =$		ksf/LF	$p_{iW-T} =$	0.000	ksf/LF		
Dry- Recta	· ·	$P_{iD-R} =$	46.314	•				y=0.97	46.3	
Dry- Trang		P _{iD-T} =	2.557	•				y=0.64	2.5	
Wet- Recta	· ·	$P_{iD-R} =$	0.000	•				y=0.00	0.0	
Dry- Trang	ular:	$P_{iD-T} =$	0.000	kips/w				y=0.00	0.0	0.00
Dredge Si	do Lavor ()	(i = 8)	Passive						
•	0.000	Ω =		$\cos \delta =$	0.000	K _{Pi} =	0.000			
l'	pading w= i					layer top:		ft		
Geostatic	J	• •	0.00	Layer I =	•	іаусі тор.	0.00	11		
		Layer-2	Layer-3		Layer-5	Layer-6	Layer-7	Layer-8		
Dry - L _{iD}	0.00	0.00	0.00	0.00	13.00	5.00	1.93	0.00		
Dry - L _{iD}	0.000	0.0000	0.000	0.000		0.1250	0.1250			
Wet - L _{iW}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Wet γ _b	0.0000	0.0000	0.0000	0.0000		0.0626	0.0626			
Sum	0.000	0.000	0.000	0.000		0.625	0.241	0.0000		
$g_{i-top} =$		0.000	H _{iD} =		ft	H _{iW} =		ft		
g _{i-water} =					kcf		0.0000			
g _{i-bottom} =			p _{iD-R} =		ksf/LF	p _{iD-T} =		ksf/LF		
O Doctom	0		$p_{iW-R} =$		ksf/LF	$p_{iW-T} =$		ksf/LF		
Dry- Recta	ngular:	P _{iD-R} =		kips/w		,		y=0.00	0.0	0.00
Dry- Trang	ular:	P _{iD-T} =	0.000	kips/w				y=0.00	0.0	0.00
Wet- Recta	angular:	P _{iD-R} =	0.000	kips/w				y=0.00	0.0	0.00
Dry- Trang	ular:	$P_{iD-T} =$	0.000	kips/w				y=0.00	0.0	0.00
Dredge Sid	de: Addec			- - -						
R1		0.00	kips/LF	@ EL	-9.50			-y=192.57	0.0	0.00
				Tip @ EL	183.07					
Dredge Sid	de: Water	Pressure							F	F*y
Componer			ure/force a	above drec	lge line:					
L _{wL} =		•	γ_w (kcf)=	0.0624		$\gamma_{1} = \gamma_{W} L_{WR}$	0.0000	ksf/LF		
Lo	oading wid	th above d	redge, s =	6.00	ft	D _o =	19.93			
	$P_{W2-At} = 0.5$			kips/LF		O .		y=12.60	0.0	0.00
Componer				•	lge line:			J		

Rectangular:	p _{w1} =	0.0000 ksf					ĺ
Loading wid	Ith below dred	$dge, s_w = 1.17$	ft				
$P_{w2-Br} =$	$p_{w1} D_o s_w =$	0.00 kips/pile		y=9.97	,	0.00	0.00
Triangular:							
$L_{adj} = -22.0$	0 ft		$p_{w3} = \gamma_w (D_o + L_{adj})$	-0.129 ksf/LF			
$P_{w2-Bt} = 0.5 p_{w3}$ (1)	$D_o + D_{adj})s_w$	0.156 kips/pile		-y=0.69)	0.16	-0.11
Dredge Side:	Anchor Fo	rce		Last			
	T=	0.00 kips/LF		-y=183.07	,	0.00	0.00
					Total	216.48	1328.82
			1	Difference:		141.91	0.00

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Soldier Pile Design 45893-001

West Approach skk 2021/12/14

Active I	Active Earth Pre.Coeff.(Coulomb) (For $\beta > \phi$; Sin($\phi - \beta$) is assumed 0)										
Layer	ф	δ	β	θ	Sin (φ + δ)	Sin (φ–β)	Sin (θ –δ)	Sin (θ+ β)	Sin (θ+ φ)	Г	k _a
1	30.0°	0.0°	0.0°	90.0°	0.500	0.500	1.000	1.000	0.866	2.250	0.333
5	30.0°	0.0°	0.0°	90.0°	0.500	0.500	1.000	1.000	0.866	2.250	0.333
6	34.0°	0.0°	0.0°	90.0°	0.559	0.559	1.000	1.000	0.829	2.431	0.283
7	38.0°	0.0°	0.0°	90.0°	0.616	0.616	1.000	1.000	0.788	2.610	0.238

Note: Ka is calculatated based on AASHTO equations 3.11.5.3-1 and 3.11.5.3-2

Passive	Earth Pres.	.CoefVert	ical Wall	(AASHTO Figure 3.11.5.4-2)			β = 0.0°				
Layer	ф	δ	δ/φ	Inte	Interpolation of R		β/φ	k _p at	k_p at	Chart k _p	R*Kp
				R _{down}	R_{up}	R		β/φ=0	β/ф=1		
5	30.0°	0.0°	0.00	0.467	0.467	0.467	0.000	6.508	15.638	6.508	3.039
6	34.0°	0.0°	0.00	0.383	0.383	0.383	0.000	9.197	30.518	9.197	3.522
7	38.0°	0.0°	0.00	0.302	0.302	0.302	0.000	13.852	61.339	13.852	4.183
				#VALUE!							

(For Comparison)

Passive	Passive Earth Pressure Coeff. (Coulomb))	Bowles(1982), Eq.11-6)			β = 0.0°		θ = 90.0°	
Layer	ф	δ	Sin (φ + δ)	Sin (φ + β)	Sin (θ+δ)	Sin (θ+ β)	Γ	Sin (θ - φ)	Sin (θ)	Coulomb K _n	Rankine Kn
5	30.0°	0.0°	0.500	0.500	1.000	1.000	0.250	0.866	1.000	3.000	3.000
6	34.0°	0.0°	0.559	0.559	1.000	1.000	0.194	0.829	1.000	3.537	3.537
7	38.0°	0.0°	0.616	0.616	1.000	1.000	0.148	0.788	1.000	4.204	4.204

I	Fifth Order interpolation Function for Kp								
	Coeff.	φ ⁵	φ ⁴	φ ²	ф	Const.			
	β/φ=0	2.26E-06	-2.34E-04	9.45E-03	-1.73E-01	1.48E+00	-2.91E+00		
	β/φ=1	6.51E-06	-4.69E-04	1.33E-02	-1.70E-01	1.13E+00	-1.63E+00		

ASD	Yes	
LRFD	No	Sand
		Rock

Layer	Ka	Кр
1	0.333	\times
2		\times
3		\times
4		\times
5	0.333	3.039
6	0.283	3.522
7	0.238	4.183
8		

44

45

1.000

1.000

0.911

0.907

0.820

0.811

0.731

0.718

0.616

0.600

0.518

0.500

0.434

0.414

0.359

0.339

0.346

0.339

0.240

0.221

0.192

0.174

Soldier Pile Wall Design

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Soldier Pile Design

West Approach skk 2021/12/14

45893-001 Interpolated R Values based AASHTO Table 3-11.5.4-2 δ/ϕ_f ф -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 10 1.000 0.993 0.985 0.978 0.962 0.946 0.929 0.912 0.898 0.864 0.881 0.919 11 1.000 0.992 0.983 0.975 0.956 0.938 0.900 0.884 0.865 0.846 12 1.000 0.991 0.981 0.971 0.951 0.930 0.910 0.889 0.871 0.850 0.828 13 1.000 0.978 0.968 0.945 0.900 0.811 0.989 0.923 0.877 0.857 0.834 14 1.000 0.988 0.976 0.964 0.940 0.915 0.891 0.866 0.844 0.819 0.793 0.974 0.961 0.934 0.775 15 1.000 0.987 0.907 0.881 0.854 0.830 0.803 16 1.000 0.985 0.971 0.956 0.927 0.898 0.870 0.841 0.814 0.786 0.756 17 1.000 0.984 0.968 0.951 0.921 0.889 0.858 0.827 0.799 0.768 0.736 18 1.000 0.982 0.964 0.946 0.914 0.880 0.847 0.814 0.783 0.751 0.717 0.941 19 1.000 0.981 0.961 0.908 0.871 0.835 0.800 0.768 0.733 0.697 20 1.000 0.958 0.936 0.824 0.752 0.716 0.678 0.979 0.901 0.862 0.787 1.000 0.931 0.657 21 0.977 0.955 0.893 0.851 0.818 0.772 0.735 0.697 0.926 22 1.000 0.976 0.952 0.885 0.840 0.812 0.757 0.718 0.678 0.636 23 1.000 0.974 0.948 0.922 0.830 0.807 0.741 0.700 0.658 0.616 0.876 24 1.000 0.973 0.945 0.917 0.868 0.819 0.801 0.726 0.683 0.639 0.595 25 1.000 0.971 0.942 0.912 0.860 0.808 0.795 0.711 0.666 0.620 0.574 1.000 0.969 0.937 0.905 0.850 0.796 0.773 0.694 0.600 0.553 26 0.648 27 0.629 0.580 1.000 0.967 0.933 0.898 0.840 0.783 0.751 0.677 0.531 28 1.000 0.928 0.892 0.771 0.730 0.560 0.510 0.964 0.831 0.661 0.611 29 1.000 0.885 0.758 0.708 0.644 0.592 0.540 0.488 0.962 0.924 0.821 30 1.000 0.960 0.919 0.878 0.811 0.746 0.686 0.627 0.574 0.520 0.467 31 1.000 0.957 0.914 0.870 0.799 0.732 0.669 0.609 0.554 0.499 0.446 32 1.000 0.954 0.908 0.861 0.787 0.653 0.591 0.479 0.425 0.717 0.534 1.000 0.853 33 0.952 0.903 0.776 0.703 0.636 0.572 0.515 0.458 0.404 34 1.000 0.949 0.897 0.844 0.764 0.688 0.620 0.554 0.495 0.438 0.383 35 1.000 0.946 0.892 0.836 0.752 0.674 0.603 0.536 0.475 0.417 0.362 36 0.825 0.585 1.000 0.942 0.885 0.738 0.658 0.517 0.455 0.397 0.342 37 1.000 0.939 0.878 0.815 0.724 0.641 0.567 0.497 0.435 0.377 0.322 38 1.000 0.804 0.710 0.548 0.356 0.302 0.935 0.871 0.625 0.478 0.415 1.000 0.794 0.282 39 0.932 0.864 0.696 0.608 0.530 0.458 0.395 0.336 40 1.000 0.928 0.857 0.783 0.682 0.592 0.512 0.439 0.375 0.316 0.262 1.000 0.770 0.574 0.492 0.368 0.297 0.244 41 0.924 0.848 0.666 0.419 0.757 0.278 0.227 42 1.000 0.920 0.839 0.649 0.555 0.473 0.399 0.361 43 1.000 0.915 0.829 0.744 0.633 0.537 0.453 0.379 0.353 0.259 0.209

Opitz Blvd Wall, Sta. 64+50, Boring B-A3-1

Soldier Pile Design

West Approach

45893-001 skk 2021/12/14

Soldier Pile and Lagging (SPL) Wall

E.4.1 Section and Embedment Design

E.4.2 Top Deflection Estimations

Base model

Concrete Code:	EC2-German Annex/1.5			
Steel Code:	AISC 360-16 ALL.			
1st Wall Limit Equilibrium	California Shoring Manual-11			
Drain State Clays	Default			
Water y= 62.4 pcf	Simple flow			
Drive	Ka			
Resist	Кр			

Project: Opitz Blvd SPL Wall at West Approach

Results for Design Section 0: Base model

ANALYSIS AND CHECKING SUMMARY

The following tables summarize critical resuls for all design sections. These results may include wall moments, shears, displacements, stress checks, wall embedment safety factors, basal & slope stability safety factors, etc.

Summary vs Design Section

Base model	Wall Moment	Wall Shear	Wall Displace	Max Support	Critical Support	Embedment	Comments
	(k-ft/ft)	(k/ft)	(in)	Reaction (k/ft)	Check	Wall FS	
Base model	33.3	14.04	0	No supports	No supports	2.295	Calculation successful

Extended Summary

Table: Extended summary for all design sections.

Design Section	Calculation Result	Wall Displacement	Settlement
Name		(in)	(in)
Base model	Calculation successful	0.99	1.07

Table: Extended summary for wall moments and shears for all design sections.

Design Section	Wall Moment	Wall Moment	Wall Shear	Wall Shear	
Name	(k-ft/ft)	(k-ft)	(k/ft)	(k)	
Base model	33.3	199.83	14.04	84.25	

Table: Extended summary for wall stress checks for all design sections.

Design Section	STR Combined	STR Moment	STR Shear	Wall Concrete Service
Name	Wall Ratio	Wall Ratio	Wall Ratio	Stress Ratio FIC
Base model	0.684	0.684	0.722	N/A

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity).

STR Moment: Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

Table: Extended summary for support results for all design sections

Design Section	Max Support	Max Support	Critical	STR Support	Support Geotech
Name	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull
Base model	No supports	No supports	No supports	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity).

Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity).

Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

Table: Summary for basal stability and wall embedment safety factors from conventional analyses.

Design Section	FS	Toe FS	Toe FS	Toe FS
Name	Basal	Passive	Rotation	Length
Base model	3.359	12.528	5.299	2.295

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation).

TOE FS Passive: Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

TOE FS Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

TOE FS Length: Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0

Table: Summary for wall embedment safety factors from elastoplastic analyses.

Design Section	FS Mobilized	FS
Name	Passive	True/Active
Base model	N/A	N/A

Table notes:

FS Mobilized Passive: Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust.

Table: Summary for hydraulic safety factors, water flow, and slope stability

Design Section	Hydraulic	Qflow	FSslope
Name	Heave FS	(ft3/hr)	
Base model	2.717	N/A	N/A

Max. Moment vs Stage

	Base Model	
M stg0 (k-ft/ft)	DS: 0	
M stg1 (k-ft/ft)	-33.3	

Max. Shear vs Stage

	Base Model	
V stg0 (k/ft)	DS: 0	
V stg1 (k/ft)	-14.04	

Max. Support F vs Stage

	Base Model
Rmax Stage 0 (k/ft)	DS: 0
Rmax Stage 1 (k/ft)	

ANALYSIS AND CHECKING SUMMARY

Summary of Wall Moments and Toe Requirements

Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall 1	40	12	0/48.71	33.3/48.71	12.528	5.299	2.295	-24.2	N/A

Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W

1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 1	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
3.359	0.396	23.5	3.359	0.275	23.45	3.359

General assumptions for last stage: Stage 1

Concrete Code:	EC2-German Annex/1.5
Steel Code:	AISC 360-16 ALL.
1st Wall Limit Equilibrium	California Shoring Manual-11
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka
Resist	Кр

Envelope of results

A sequence of result diagrams for each excavation stage is reported

Extended vs Stage

	Calculation Result	Wall Displaceme	Settlement	Wall Moment	Wall Moment
		(in)	(in)	(k-ft/ft)	(k-ft)
Stage 0	Calculated	0	N/A	0	0
Stage 1	Calculated	0.99	1.07	33.3	199.83

	Wall Shear	Wall Shear	STR Combined	STR Moment	STR Shear
	(k/ft)	(k)	Wall Ratio	Wall Ratio	Wall Ratio
Stage 0	0	0	0	0	0
Stage 1	14.04	84.25	0.684	0.684	0.722

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity).

STR Moment: Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech
	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull out
Stage 0	0	0	N/A	No supports	No supports
Stage 1	0	0	N/A	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS	Toe FS	Toe FS	Zcut	FS Mobilized	FS
	Basal	Passive	Rotation	Length	(nonlinear)	Passive	True/Active
Stage 0	1000	49.035	39.735	200	N/A	N/A	N/A
Stage 1	3.359	12.528	5.299	2.295	N/A	N/A	N/A

	Hydraulic	Qflow	FSslope
	Heave FS	(ft3/hr)	
Stage 0	3.396	N/A	N/C
Stage 1	2.717	N/A	N/C

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	39.735	49.035	39.735	200	N/A	N/A
0:Stage 0	2.295	12.528	5.299	2.295	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive: Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length: Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive: Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust.

Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	1165.768/23.774	15377.64/387	40/0.2	N/A	N/A	N/A	N/A
Stage 1	554.709/44.279	5419.83/299.43	28/12.2	N/A	N/A	N/A	N/A

Reinforcement Requirements

·	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
NF	120	120	30	0	N/A	N/A	N/A	300	3	0.33	3	N/A	N/A	True	EXP	
F	120	120	30	0	N/A	N/A	N/A	300	3	0.33	3	N/A	N/A	True	EXP	
DR	130	130	38	100	N/A	N/A	N/A	600	3	0.24	4.2	N/A	N/A	True	EXP	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	V	(clays)	(clays)	1	1	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
NF	0.35	-	-	0.5	0.5	1	0	12	4.8	20	-
F	0.35	-	-	0.441	0.44	1	0	12	4.8	20	-
DR	0.35	-	-	0.384	0.5	1	0	30	14.5	30	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis)

Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height, EXP=exponential, SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water) = Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

	Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
		Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
Ī	0	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

APPENDIX E.5

Abutment and Pier Piles

E.5.1 DRIVEN Analysis

- **E.5.2** Typical LPILE Analysis
- **E.5.3** Typical WEAP Analysis Results

Pile Design SummaryByskk1/4/2022Driven OutputChecksb1/4/2022

HP 10x 57 Piles, with Nominal Capicity of 385 kips

	Pile Cap	(Depth Ref)			DRIVEN INPUT						Estimated	Estimated	Estimated
Bridge	Subgrade	Ground	Pile top	Boring	Opitz	Groun	dwater	Тор с	of DR	Pile	Pile	Pile	Pile
Element	EL	EL	Depth	ID	Sta.	EL	Depth	EL	Depth	Depth	Tip EL	Top EL	Length
	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)
Abut.A	205	205	0	1 & 2	65+44	182	23	180	25	55	150	206	56
Pier 1	189	194	5	4	66+52	182	12	178	16	50	144	190	46
Pier 2	186	191	5	5 & 6	68+10	169	22	167	24	45	146	187	41
Pier 3	185	190	5	7 & 8	69+78	167	23	166	24	45	145	186	41
Abut B	201	201	0	9 & 10	70+15	167	34	165	36	50	151	202	51
Abut C	191	191	0	B-A2-1	67+50	165	26	162	29	50	141	192	51

Notes Pile cap subgrade is assumed at existing grade for Abutment C.

PDA testing should be perfored on a 70 feet long pile at each locations.

All ground elevations are approximate.

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\ABUT-A.DVN

Project Name: Opitz Abut A Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Computed By: SKK Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 15.00 ft

- Driving/Restrike 15.00 ft - Ultimate: 15.00 ft

Ultimate Considerations: - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	25.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	25.00 ft	0.00%	120.00 pcf	36.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	120.00 pcf	36.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	120.00 pcf	36.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 14.99 ft 15.01 ft 24.01 ft 24.99 ft 25.01 ft 34.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft	Cohesionless	0.60 psf 540.60 psf 899.40 psf 1800.29 psf 2059.49 psf 2087.71 psf 2376.29 psf 2635.49 psf 2894.69 psf 3095.71 psf 3816.29 psf 4075.49 psf 4103.71 psf 4392.29 psf 4651.49 psf	22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 14.04 Kips 14.08 Kips 33.38 Kips 35.77 Kips 35.84 Kips 78.05 Kips 128.57 Kips 173.47 Kips 173.60 Kips 238.88 Kips 246.49 Kips 246.65 Kips 321.15 Kips
69.99 ft	Cohesionless	4679.71 psf	27.37	N/A	329.76 Kips
		RESTRIKE - EN	D BEARING		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 14.99 ft 15.01 ft 24.01 ft 24.99 ft 25.01 ft 34.01 ft 43.01 ft 49.99 ft 50.01 ft 59.01 ft 59.01 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 1798.80 psf 1800.58 psf 2318.98 psf 2375.42 psf 2376.58 psf 2894.98 psf 3413.38 psf 3815.42 psf 3816.58 psf 4334.98 psf 4391.42 psf 4392.58 psf 4910.98 psf 4967.42 psf	30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 134.38 Kips 163.69 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
14.99 ft	14.04 Kips	9.45 Kips	23.49 Kips
15.01 ft	14.08 Kips	9.45 Kips	23.52 Kips
24.01 ft	33.38 Kips	9.45 Kips	42.83 Kips
24.99 ft	35.77 Kips	9.45 Kips	45.22 Kips
25.01 ft	35.84 Kips	134.38 Kips	170.22 Kips
34.01 ft	78.05 Kips	163.69 Kips	241.75 Kips
43.01 ft	128.57 Kips	190.54 Kips	319.11 Kips
49.99 ft	173.47 Kips	190.54 Kips	364.01 Kips
50.01 ft	173.60 Kips	190.54 Kips	364.14 Kips
59.01 ft	238.88 Kips	190.54 Kips	429.42 Kips
59.99 ft	246.49 Kips	190.54 Kips	437.03 Kips
60.01 ft 69.01 ft 69.99 ft	246.65 Kips 321.15 Kips 329.76 Kips	190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	437.03 Kips 437.19 Kips 511.69 Kips 520.30 Kips
			•

DRIVING - SKIN FRICTION

	DITIVITA OIL	1111011011		
Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
Cohesionless	0.60 psf 540.60 psf 899.40 psf 1800.29 psf 2059.49 psf 2087.71 psf 2376.29 psf 2635.49 psf 2894.69 psf 3095.71 psf 3816.29 psf 4075.49 psf 4103.71 psf 4392.29 psf 4651.49 psf	22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 14.04 Kips 14.08 Kips 33.38 Kips 35.77 Kips 35.84 Kips 78.05 Kips 128.57 Kips 173.47 Kips 173.60 Kips 238.88 Kips 246.49 Kips 246.65 Kips 321.15 Kips 329.76 Kips
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesionless	1.20 psf 1081.20 psf 1798.80 psf 1800.58 psf 2318.98 psf 2375.42 psf 2376.58 psf 2894.98 psf 3413.38 psf 3815.42 psf 3816.58 psf 4334.98 psf 4391.42 psf 4392.58 psf 4910.98 psf 4967.42 psf	30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 134.38 Kips 163.69 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips
	Cohesionless	Soil Type Cohesionless Cohesio	Soil Type Effective Stress At Midpoint Sliding Friction Angle Cohesionless 0.60 psf 22.81 Cohesionless 540.60 psf 22.81 Cohesionless 899.40 psf 22.81 Cohesionless 1800.29 psf 22.81 Cohesionless 2059.49 psf 22.81 Cohesionless 2087.71 psf 22.81 Cohesionless 2376.29 psf 27.37 Cohesionless 2635.49 psf 27.37 Cohesionless 2635.49 psf 27.37 Cohesionless 2894.69 psf 27.37 Cohesionless 3095.71 psf 27.37 Cohesionless 4075.49 psf 27.37 Cohesionless 4075.49 psf 27.37 Cohesionless 403.71 psf 27.37 Cohesionless 4651.49 psf 27.37 Cohesionless 4679.71 psf 27.37 DRIVING - END BEARING Soil Type Effective Stress At Tip Bearing Cap. Factor Cohesionless 1081.20 psf 30.00 <t< td=""><td>Soil Type Effective Stress At Midpoint Sliding Friction Angle Adhesion Cohesionless 0.60 psf 22.81 N/A Cohesionless 540.60 psf 22.81 N/A Cohesionless 899.40 psf 22.81 N/A Cohesionless 2059.49 psf 22.81 N/A Cohesionless 2087.71 psf 22.81 N/A Cohesionless 2087.71 psf 22.81 N/A Cohesionless 2087.72 psf 27.37 N/A Cohesionless 2635.49 psf 27.37 N/A Cohesionless 2635.49 psf 27.37 N/A Cohesionless 269.57 psf 27.37 N/A Cohesionless 3095.71 psf 27.37 N/A Cohesionless 3816.29 psf 27.37 N/A Cohesionless 4075.49 psf 27.37 N/A Cohesionless 4392.29 psf 27.37 N/A Cohesionless 4651.49 psf 27.37 N/A Cohesionless 4679.71 psf</td></t<>	Soil Type Effective Stress At Midpoint Sliding Friction Angle Adhesion Cohesionless 0.60 psf 22.81 N/A Cohesionless 540.60 psf 22.81 N/A Cohesionless 899.40 psf 22.81 N/A Cohesionless 2059.49 psf 22.81 N/A Cohesionless 2087.71 psf 22.81 N/A Cohesionless 2087.71 psf 22.81 N/A Cohesionless 2087.72 psf 27.37 N/A Cohesionless 2635.49 psf 27.37 N/A Cohesionless 2635.49 psf 27.37 N/A Cohesionless 269.57 psf 27.37 N/A Cohesionless 3095.71 psf 27.37 N/A Cohesionless 3816.29 psf 27.37 N/A Cohesionless 4075.49 psf 27.37 N/A Cohesionless 4392.29 psf 27.37 N/A Cohesionless 4651.49 psf 27.37 N/A Cohesionless 4679.71 psf

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
14.99 ft	14.04 Kips	9.45 Kips	23.49 Kips
15.01 ft	14.08 Kips	9.45 Kips	23.52 Kips
24.01 ft	33.38 Kips	9.45 Kips	42.83 Kips
24.99 ft	35.77 Kips	9.45 Kips	45.22 Kips
25.01 ft	35.84 Kips	134.38 Kips	170.22 Kips
34.01 ft	78.05 Kips	163.69 Kips	241.75 Kips
43.01 ft	128.57 Kips	190.54 Kips	319.11 Kips
49.99 ft	173.47 Kips	190.54 Kips	364.01 Kips
50.01 ft	173.60 Kips	190.54 Kips	364.14 Kips
59.01 ft	238.88 Kips	190.54 Kips	429.42 Kips
59.99 ft	246.49 Kips	190.54 Kips	437.03 Kips
60.01 ft	246.65 Kips	190.54 Kips	437.19 Kips
69.01 ft	321.15 Kips	190.54 Kips	511.69 Kips
69.99 ft	329.76 Kips	190.54 Kips	520.30 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 14.99 ft 15.01 ft 24.01 ft 24.99 ft 25.01 ft 34.01 ft 49.99 ft 50.01 ft 59.99 ft 60.01 ft 69.01 ft 69.99 ft	Cohesionless	0.60 psf 540.60 psf 899.40 psf 1800.29 psf 2059.49 psf 2087.71 psf 2376.29 psf 2635.49 psf 2894.69 psf 3095.71 psf 3816.29 psf 4075.49 psf 4103.71 psf 4392.29 psf 4651.49 psf 4679.71 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 14.04 Kips 14.08 Kips 33.38 Kips 35.77 Kips 35.84 Kips 78.05 Kips 128.57 Kips 173.47 Kips 173.60 Kips 238.88 Kips 246.49 Kips 246.65 Kips 321.15 Kips 329.76 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 14.99 ft 15.01 ft 24.01 ft 24.99 ft 25.01 ft 34.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 1798.80 psf 1800.58 psf 2318.98 psf 2375.42 psf 2376.58 psf 2894.98 psf 3413.38 psf 3815.42 psf 3816.58 psf 4334.98 psf 4391.42 psf 4392.58 psf 4910.98 psf 4967.42 psf	30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 134.38 Kips 163.69 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
14.99 ft	14.04 Kips	9.45 Kips	23.49 Kips
15.01 ft	14.08 Kips	9.45 Kips	23.52 Kips
24.01 ft	33.38 Kips	9.45 Kips	42.83 Kips
24.99 ft	35.77 Kips	9.45 Kips	45.22 Kips
25.01 ft	35.84 Kips	134.38 Kips	170.22 Kips
34.01 ft	78.05 Kips	163.69 Kips	241.75 Kips
43.01 ft	128.57 Kips	190.54 Kips	319.11 Kips
49.99 ft	173.47 Kips	190.54 Kips	364.01 Kips
50.01 ft	173.60 Kips	190.54 Kips	364.14 Kips
59.01 ft	238.88 Kips	190.54 Kips	429.42 Kips
59.99 ft	246.49 Kips	190.54 Kips	437.03 Kips
60.01 ft	246.65 Kips	190.54 Kips	437.19 Kips
69.01 ft	321.15 Kips	190.54 Kips	511.69 Kips
69.99 ft	329.76 Kips	190.54 Kips	520.30 Kips
บฮ.ฮฮ แ	323.10 Mps	130.34 KIPS	320.30 NIPS

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\ABUT-B.DVN

Project Name: Opitz Abut B Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Computed By: SKK Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

Ultimate Considerations:

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 34.00 ft

- Driving/Restrike 34.00 ft - Ultimate: 34.00 ft - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	36.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	14.00 ft	0.00%	125.00 pcf	36.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	125.00 pcf	36.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	120.00 pcf	36.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth S	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
9.01 ft C 18.01 ft C 18.01 ft C 27.01 ft C 33.99 ft C 34.01 ft C 35.99 ft C 36.01 ft C 49.99 ft C 50.01 ft C 59.99 ft C 60.01 ft C 69.01 ft C 6	Cohesionless	0.60 psf 540.60 psf 1080.60 psf 1620.60 psf 2039.40 psf 4080.29 psf 4137.31 psf 4195.51 psf 4477.21 psf 4633.09 psf 5071.91 psf 5353.61 psf 5384.29 psf 5957.09 psf 5985.31 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 45.58 Kips 72.18 Kips 72.26 Kips 80.79 Kips 80.91 Kips 152.62 Kips 196.18 Kips 196.36 Kips 282.11 Kips 291.99 Kips 292.20 Kips 387.61 Kips 398.50 Kips
		•			
Depth S	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
9.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 45.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.01 ft	Cohesionless	1.20 psf 1081.20 psf 2161.20 psf 3241.20 psf 4078.80 psf 4080.58 psf 4194.62 psf 4195.83 psf 4759.23 psf 5070.97 psf 5072.23 psf 5635.63 psf 5696.97 psf 5698.18 psf 6216.58 psf 6273.02 psf	30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips
45.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft 0.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 45.01 ft 49.99 ft 50.01 ft 59.01 ft 59.01 ft 69.01 ft 69.01 ft	Cohesionless	4477.21 psf 4633.09 psf 5071.91 psf 5353.61 psf 5384.29 psf 5697.89 psf 5985.31 psf RESTRIKE - END Effective Stress At Tip 1.20 psf 1081.20 psf 2161.20 psf 3241.20 psf 4078.80 psf 4078.80 psf 4080.58 psf 4194.62 psf 4195.83 psf 4759.23 psf 5070.97 psf 5072.23 psf 5696.97 psf 5698.18 psf 6216.58 psf	27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 DEARING Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	N/A	152.62 196.18 196.30 282.1 291.99 292.20 387.6 398.50 End Bearir 0.01 k 9.45 k 9.45 k 9.45 k 9.45 k 9.45 k 190.5 190.5 190.5 190.5 190.5 190.5 190.5

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
27.01 ft	45.58 Kips	9.45 Kips	55.03 Kips
33.99 ft	72.18 Kips	9.45 Kips	81.63 Kips
34.01 ft	72.26 Kips	9.45 Kips	81.71 Kips
35.99 ft	80.79 Kips	9.45 Kips	90.24 Kips
36.01 ft	80.91 Kips	190.54 Kips	271.45 Kips
45.01 ft	152.62 Kips	190.54 Kips	343.16 Kips
49.99 ft	196.18 Kips	190.54 Kips	386.72 Kips
50.01 ft	196.36 Kips	190.54 Kips	386.90 Kips
59.01 ft	282.11 Kips	190.54 Kips	472.65 Kips
59.99 ft	291.99 Kips	190.54 Kips	482.53 Kips
60.01 ft	292.20 Kips	190.54 Kips	482.73 Kips
69.01 ft	387.61 Kips	190.54 Kips	578.15 Kips
69.99 ft	398.50 Kips	190.54 Kips	589.04 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.01 ft	Cohesionless	0.60 psf 540.60 psf 1080.60 psf 1620.60 psf 2039.40 psf 4080.29 psf 4137.31 psf 4195.51 psf 4477.21 psf 4633.09 psf 5071.91 psf 5353.61 psf 5384.29 psf 5697.89 psf 5957.09 psf 5985.31 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 45.58 Kips 72.18 Kips 72.26 Kips 80.79 Kips 80.91 Kips 152.62 Kips 196.18 Kips 196.36 Kips 282.11 Kips 291.99 Kips 292.20 Kips 387.61 Kips 398.50 Kips
		<u>DRIVING - END</u>	<u>BEARING</u>		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 2161.20 psf 3241.20 psf 4078.80 psf 4080.58 psf 4194.62 psf 4195.83 psf 4759.23 psf 5070.97 psf 5072.23 psf 5635.63 psf 5696.97 psf 5698.18 psf 6216.58 psf 6273.02 psf	30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
27.01 ft	45.58 Kips	9.45 Kips	55.03 Kips
33.99 ft	72.18 Kips	9.45 Kips	81.63 Kips
34.01 ft	72.26 Kips	9.45 Kips	81.71 Kips
35.99 ft	80.79 Kips	9.45 Kips	90.24 Kips
36.01 ft	80.91 Kips	190.54 Kips	271.45 Kips
45.01 ft	152.62 Kips	190.54 Kips	343.16 Kips
49.99 ft	196.18 Kips	190.54 Kips	386.72 Kips
50.01 ft	196.36 Kips	190.54 Kips	386.90 Kips
59.01 ft	282.11 Kips	190.54 Kips	472.65 Kips
59.99 ft	291.99 Kips	190.54 Kips	482.53 Kips
60.01 ft	292.20 Kips	190.54 Kips	482.73 Kips
69.01 ft	387.61 Kips	190.54 Kips	578.15 Kips
69.99 ft	398.50 Kips	190.54 Kips	589.04 Kips

ULTIMATE - SKIN FRICTION

OLIMATE CHITTMOTION					
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 45.01 ft 49.99 ft 50.01 ft 59.01 ft 60.01 ft 69.01 ft 69.01 ft	Cohesionless	0.60 psf 540.60 psf 1080.60 psf 1620.60 psf 2039.40 psf 4080.29 psf 4137.31 psf 4195.51 psf 4477.21 psf 4633.09 psf 5071.91 psf 5353.61 psf 5384.29 psf 5697.89 psf 5957.09 psf 5985.31 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 45.58 Kips 72.18 Kips 72.26 Kips 80.79 Kips 80.91 Kips 152.62 Kips 196.18 Kips 196.36 Kips 282.11 Kips 291.99 Kips 292.20 Kips 387.61 Kips 398.50 Kips
		<u>ULTIMATE - ENI</u>	<u>D BEARING</u>		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 18.01 ft 27.01 ft 33.99 ft 34.01 ft 35.99 ft 36.01 ft 45.01 ft 49.99 ft 50.01 ft 59.01 ft 59.01 ft 69.01 ft 69.01 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 2161.20 psf 3241.20 psf 4078.80 psf 4080.58 psf 4194.62 psf 4195.83 psf 4759.23 psf 5070.97 psf 5072.23 psf 5635.63 psf 5696.97 psf 5698.18 psf 6216.58 psf 6273.02 psf	30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
27.01 ft	45.58 Kips	9.45 Kips	55.03 Kips
33.99 ft	72.18 Kips	9.45 Kips	81.63 Kips
34.01 ft	72.26 Kips	9.45 Kips	81.71 Kips
35.99 ft	80.79 Kips	9.45 Kips	90.24 Kips
36.01 ft	80.91 Kips	190.54 Kips	271.45 Kips
45.01 ft	152.62 Kips	190.54 Kips	343.16 Kips
49.99 ft	196.18 Kips	190.54 Kips	386.72 Kips
50.01 ft	196.36 Kips	190.54 Kips	386.90 Kips
59.01 ft	282.11 Kips	190.54 Kips	472.65 Kips
59.99 ft	291.99 Kips	190.54 Kips	482.53 Kips
60.01 ft	292.20 Kips	190.54 Kips	482.73 Kips
69.01 ft	387.61 Kips	190.54 Kips	578.15 Kips
69.99 ft	398.50 Kips	190.54 Kips	589.04 Kips

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\ABUT-C.DVN

Project Name: Opitz Abut C Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 26.00 ft

- Driving/Restrike 26.00 ft - Ultimate: 26.00 ft - Local Scour: 0.00 ft

Ultimate Considerations: - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	29.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	21.00 ft	0.00%	130.00 pcf	36.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	130.00 pcf	36.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	130.00 pcf	36.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 18.01 ft 25.99 ft 26.01 ft 28.99 ft 29.01 ft 38.01 ft 47.01 ft 49.99 ft 50.01 ft 59.01 ft 69.01 ft 69.99 ft	Cohesionless	0.60 psf 540.60 psf 1080.60 psf 1559.40 psf 3120.29 psf 3206.11 psf 3293.14 psf 3597.34 psf 3901.54 psf 4002.26 psf 4712.74 psf 5016.94 psf 5050.06 psf 5388.74 psf 5692.94 psf 5726.06 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 42.20 Kips 42.26 Kips 52.21 Kips 52.31 Kips 109.93 Kips 177.29 Kips 201.74 Kips 201.91 Kips 282.27 Kips 291.61 Kips 291.80 Kips 382.98 Kips 393.50 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 18.01 ft 25.99 ft 26.01 ft 28.99 ft 29.01 ft 38.01 ft 47.01 ft 49.99 ft 50.01 ft 59.01 ft 69.01 ft 69.01 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 2161.20 psf 3118.80 psf 3120.58 psf 3292.22 psf 3293.48 psf 3901.88 psf 4510.28 psf 4711.72 psf 4713.08 psf 5321.48 psf 5387.72 psf 5389.08 psf 5997.48 psf 6063.72 psf	30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 186.22 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
25.99 ft	42.20 Kips	9.45 Kips	51.65 Kips
26.01 ft	42.26 Kips	9.45 Kips	51.71 Kips
28.99 ft	52.21 Kips	9.45 Kips	61.66 Kips
29.01 ft	52.31 Kips	186.22 Kips	238.53 Kips
38.01 ft	109.93 Kips	190.54 Kips	300.47 Kips
47.01 ft	177.29 Kips	190.54 Kips	367.83 Kips
49.99 ft	201.74 Kips	190.54 Kips	392.28 Kips
50.01 ft	201.91 Kips	190.54 Kips	392.45 Kips
59.01 ft	282.27 Kips	190.54 Kips	472.81 Kips
59.99 ft	291.61 Kips	190.54 Kips	482.15 Kips
60.01 ft	291.80 Kips	190.54 Kips	482.34 Kips
69.01 ft	382.98 Kips	190.54 Kips	573.52 Kips
69.99 ft	393.50 Kips	190.54 Kips	584.04 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 18.01 ft 25.99 ft 26.01 ft 28.99 ft 29.01 ft 38.01 ft 47.01 ft 49.99 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	0.60 psf 540.60 psf 1080.60 psf 1559.40 psf 3120.29 psf 3206.11 psf 3293.14 psf 3597.34 psf 3901.54 psf 4002.26 psf 4712.74 psf 5016.94 psf 5050.06 psf 5388.74 psf 5692.94 psf 5726.06 psf	22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 42.20 Kips 42.26 Kips 52.21 Kips 52.31 Kips 109.93 Kips 177.29 Kips 201.74 Kips 201.91 Kips 282.27 Kips 291.61 Kips 291.80 Kips 382.98 Kips 393.50 Kips
		DRIVING - ENI			
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 18.01 ft 25.99 ft 26.01 ft 28.99 ft 29.01 ft 38.01 ft 47.01 ft 49.99 ft 50.01 ft 59.01 ft 69.99 ft 69.99 ft	Cohesionless	1.20 psf 1081.20 psf 2161.20 psf 3118.80 psf 3120.58 psf 3292.22 psf 3293.48 psf 3901.88 psf 4510.28 psf 4711.72 psf 4713.08 psf 5321.48 psf 5387.72 psf 5389.08 psf 5997.48 psf 6063.72 psf	30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 186.22 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
25.99 ft	42.20 Kips	9.45 Kips	51.65 Kips
26.01 ft	42.26 Kips	9.45 Kips	51.71 Kips
28.99 ft	52.21 Kips	9.45 Kips	61.66 Kips
29.01 ft	52.31 Kips	186.22 Kips	238.53 Kips
38.01 ft	109.93 Kips	190.54 Kips	300.47 Kips
47.01 ft	177.29 Kips	190.54 Kips	367.83 Kips
49.99 ft	201.74 Kips	190.54 Kips	392.28 Kips
50.01 ft	201.91 Kips	190.54 Kips	392.45 Kips
59.01 ft	282.27 Kips	190.54 Kips	472.81 Kips
59.99 ft	291.61 Kips	190.54 Kips	482.15 Kips
60.01 ft	291.80 Kips	190.54 Kips	482.34 Kips
69.01 ft	382.98 Kips	190.54 Kips	573.52 Kips
69.99 ft	393.50 Kips	190.54 Kips	584.04 Kips

ULTIMATE - SKIN FRICTION

	<u></u>				
Depth So	7 1	ctive Stress lidpoint	Sliding Friction Angle	Adhesion	Skin Friction
9.01 ft Co 18.01 ft Co 25.99 ft Co 26.01 ft Co 28.99 ft Co 29.01 ft Co 38.01 ft Co 47.01 ft Co 49.99 ft Co 59.01 ft Co 59.99 ft Co 60.01 ft Co 69.01 ft Co	ohesionless 1080 ohesionless 3120 ohesionless 3206 ohesionless 3293 ohesionless 3901 ohesionless 4002 ohesionless 5016 ohesionless 5050 ohesionless 5388 ohesionless 5692	60 psf 0.60 psf 0.40 psf 0.29 psf 6.11 psf 6.11 psf 6.14 psf 7.34 psf 1.54 psf 2.26 psf 2.74 psf 6.94 psf 0.06 psf 3.74 psf 2.94 psf	22.81 22.81 22.81 22.81 22.81 22.81 22.81 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 20.26 Kips 42.20 Kips 42.26 Kips 52.21 Kips 52.31 Kips 109.93 Kips 177.29 Kips 201.74 Kips 201.91 Kips 282.27 Kips 291.61 Kips 291.80 Kips 382.98 Kips 393.50 Kips
09.99 11 00		•		IN/A	393.30 Kips
Depth So		ctive Stress	Bearing Cap. Factor	Limiting End Bearing	End Bearing
9.01 ft Co 18.01 ft Co 25.99 ft Co 26.01 ft Co 28.99 ft Co 29.01 ft Co 38.01 ft Co 47.01 ft Co 49.99 ft Co 59.01 ft Co 59.99 ft Co 60.01 ft Co 69.01 ft Co	ohesionless 2161 ohesionless 3118 ohesionless 3120 ohesionless 3292 ohesionless 3901 ohesionless 4510 ohesionless 4711 ohesionless 5321 ohesionless 5387 ohesionless 5389 ohesionless 5997	psf 1.20 psf 1.20 psf 3.80 psf 3.58 psf 2.22 psf 3.48 psf 1.88 psf 1.72 psf 3.08 psf 1.48 psf 7.72 psf 9.08 psf 7.48 psf 7.48 psf 3.72 psf	30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 186.22 Kips 190.54 Kips
38.01 ft	ohesionless ohesio	7.34 psf 1.54 psf 1.54 psf 2.26 psf 2.74 psf 5.94 psf 5.94 psf 5.06 psf 1.94 psf 6.06 psf 1.20 psf	27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 27.37 BEARING Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	N/A	109.9 177.2 201.7 201.9 282.2 291.6 291.8 382.9 393.5 End Bearii 0.01 k 9.45 k 9.45 k 9.45 k 9.45 k 9.45 k 190.5 190.5 190.5 190.5 190.5 190.5

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
18.01 ft	20.26 Kips	9.45 Kips	29.71 Kips
25.99 ft	42.20 Kips	9.45 Kips	51.65 Kips
26.01 ft	42.26 Kips	9.45 Kips	51.71 Kips
28.99 ft	52.21 Kips	9.45 Kips	61.66 Kips
29.01 ft	52.31 Kips	186.22 Kips	238.53 Kips
38.01 ft	109.93 Kips	190.54 Kips	300.47 Kips
47.01 ft	177.29 Kips	190.54 Kips	367.83 Kips
49.99 ft	201.74 Kips	190.54 Kips	392.28 Kips
50.01 ft	201.91 Kips	190.54 Kips	392.45 Kips
59.01 ft	282.27 Kips	190.54 Kips	472.81 Kips
59.99 ft	291.61 Kips	190.54 Kips	482.15 Kips
60.01 ft	291.80 Kips	190.54 Kips	482.34 Kips
69.01 ft	382.98 Kips	190.54 Kips	573.52 Kips
69.99 ft	393.50 Kips	190.54 Kips	584.04 Kips

Filename: C:\HOLD\ABUT-C.DVN

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\PIER-1.DVN

Project Name: Opitz Pier-1 Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Computed By: SKK Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 12.00 ft

- Driving/Restrike 12.00 ft - Ultimate: 12.00 ft

Ultimate Considerations: - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	16.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	24.00 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.99 ft 50.01 ft 59.99 ft	Cohesionless	0.60 psf 540.60 psf 719.40 psf 1440.29 psf 1554.91 psf 1670.74 psf 1974.94 psf 2279.14 psf 2481.26 psf 3293.14 psf 3597.34 psf 3630.46 psf 3969.14 psf 4273.34 psf 4306.46 psf	22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 8.98 Kips 9.01 Kips 15.46 Kips 15.51 Kips 54.24 Kips 104.89 Kips 145.14 Kips 145.29 Kips 215.82 Kips 224.22 Kips 224.40 Kips 308.18 Kips 318.03 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.99 ft 59.01 ft 59.01 ft	Cohesionless	1.20 psf 1081.20 psf 1438.80 psf 1440.58 psf 1669.82 psf 1671.08 psf 2279.48 psf 2887.88 psf 3292.12 psf 3293.48 psf 3901.88 psf 3968.12 psf 3969.48 psf 4577.88 psf 4644.12 psf	30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 128.89 Kips 163.29 Kips 186.15 Kips 186.22 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
11.99 ft	8.98 Kips	9.45 Kips	18.43 Kips
12.01 ft	9.01 Kips	9.45 Kips	18.46 Kips
15.99 ft 16.01 ft 25.01 ft	15.46 Kips 15.51 Kips	9.45 Kips 94.49 Kips	24.90 Kips 110.00 Kips
34.01 ft 39.99 ft	54.24 Kips 104.89 Kips 145.14 Kips	128.89 Kips 163.29 Kips 186.15 Kips	183.13 Kips 268.18 Kips 331.29 Kips
40.01 ft	145.29 Kips	186.22 Kips	331.51 Kips
49.01 ft	215.82 Kips	190.54 Kips	406.36 Kips
49.99 ft	224.22 Kips	190.54 Kips	414.76 Kips
50.01 ft	224.40 Kips	190.54 Kips	414.93 Kips
59.01 ft	308.18 Kips	190.54 Kips	498.72 Kips
59.99 ft	318.03 Kips	190.54 Kips	508.57 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft 50.01 ft 59.99 ft	Cohesionless	0.60 psf 540.60 psf 719.40 psf 1440.29 psf 1554.91 psf 1670.74 psf 1974.94 psf 2279.14 psf 2481.26 psf 3293.14 psf 3597.34 psf 3630.46 psf 3969.14 psf 4273.34 psf 4306.46 psf	22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 8.98 Kips 9.01 Kips 15.46 Kips 15.51 Kips 54.24 Kips 104.89 Kips 145.14 Kips 145.29 Kips 215.82 Kips 224.22 Kips 224.40 Kips 308.18 Kips 318.03 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft 59.01 ft 59.99 ft	Cohesionless	1.20 psf 1081.20 psf 1438.80 psf 1440.58 psf 1669.82 psf 1671.08 psf 2279.48 psf 2887.88 psf 3292.12 psf 3293.48 psf 3901.88 psf 3968.12 psf 3969.48 psf 4577.88 psf 4644.12 psf	30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 94.49 Kips 128.89 Kips 163.29 Kips 186.15 Kips 186.22 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
11.99 ft	8.98 Kips	9.45 Kips	18.43 Kips
12.01 ft	9.01 Kips	9.45 Kips	18.46 Kips
15.99 ft	15.46 Kips	9.45 Kips	24.90 Kips
16.01 ft	15.51 Kips	94.49 Kips	110.00 Kips
25.01 ft	54.24 Kips	128.89 Kips	183.13 Kips
34.01 ft	104.89 Kips	163.29 Kips	268.18 Kips
39.99 ft	145.14 Kips	186.15 Kips	331.29 Kips
40.01 ft	145.29 Kips	186.22 Kips	331.51 Kips
49.01 ft	215.82 Kips	190.54 Kips	406.36 Kips
49.99 ft	224.22 Kips	190.54 Kips	414.76 Kips
50.01 ft	224.40 Kips	190.54 Kips	414.93 Kips
59.01 ft	308.18 Kips	190.54 Kips	498.72 Kips
59.99 ft	318.03 Kips	190.54 Kips	508.57 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.99 ft 50.01 ft 59.99 ft	Cohesionless	0.60 psf 540.60 psf 719.40 psf 1440.29 psf 1554.91 psf 1670.74 psf 1974.94 psf 2279.14 psf 2481.26 psf 3293.14 psf 3597.34 psf 3630.46 psf 3969.14 psf 4273.34 psf 4306.46 psf	22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 5.07 Kips 8.98 Kips 9.01 Kips 15.46 Kips 15.51 Kips 54.24 Kips 104.89 Kips 145.14 Kips 145.29 Kips 215.82 Kips 224.22 Kips 224.40 Kips 308.18 Kips 318.03 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 11.99 ft 12.01 ft 15.99 ft 16.01 ft 25.01 ft 34.01 ft 39.99 ft 40.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft	Cohesionless	1.20 psf 1081.20 psf 1438.80 psf 1440.58 psf 1669.82 psf 1671.08 psf 2279.48 psf 2887.88 psf 3292.12 psf 3293.48 psf 3901.88 psf 3968.12 psf 3969.48 psf 4577.88 psf 4644.12 psf	30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips	0.01 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 94.49 Kips 128.89 Kips 163.29 Kips 186.15 Kips 186.22 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	5.07 Kips	9.45 Kips	14.52 Kips
11.99 ft	8.98 Kips	9.45 Kips	18.43 Kips
12.01 ft	9.01 Kips	9.45 Kips	18.46 Kips
15.99 ft	15.46 Kips	9.45 Kips	24.90 Kips
16.01 ft	15.51 Kips	94.49 Kips	110.00 Kips
25.01 ft	54.24 Kips	128.89 Kips	183.13 Kips
34.01 ft	104.89 Kips	163.29 Kips	268.18 Kips
39.99 ft	145.14 Kips	186.15 Kips	331.29 Kips
40.01 ft	145.29 Kips	186.22 Kips	331.51 Kips
49.01 ft	215.82 Kips	190.54 Kips	406.36 Kips
49.99 ft	224.22 Kips	190.54 Kips	414.76 Kips
50.01 ft	224.40 Kips	190.54 Kips	414.93 Kips
59.01 ft	308.18 Kips	190.54 Kips	498.72 Kips
59.99 ft	318.03 Kips	190.54 Kips	508.57 Kips

Filename: C:\HOLD\PIER-1.DVN

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\PIER-2.DVN

Project Name: Opitz Pier-2 Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 5.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

Ultimate Considerations:

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 22.00 ft

- Driving/Restrike 22.00 ft - Ultimate: 22.00 ft - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

L TIMATE DOGELLE

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	24.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	26.00 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	120.00 pcf	38.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	120.00 pcf	38.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 42.01 ft 49.99 ft 50.01 ft 59.99 ft 60.01 ft 69.01 ft 69.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 840.60 psf 1380.60 psf 1619.40 psf 2640.29 psf 2697.31 psf 2755.54 psf 3059.74 psf 3363.94 psf 3633.66 psf 4513.09 psf 4772.29 psf 4800.51 psf 5089.09 psf 5348.29 psf 5376.51 psf	0.00 0.00 22.81 22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 3.51 Kips 18.70 Kips 28.65 Kips 28.70 Kips 34.26 Kips 34.35 Kips 94.35 Kips 166.27 Kips 240.02 Kips 240.02 Kips 240.22 Kips 333.78 Kips 344.59 Kips 344.81 Kips 449.67 Kips
	- · · -	RESTRIKE - EN			
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 33.01 ft 49.99 ft 50.01 ft 59.99 ft 60.01 ft 69.01 ft 69.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2638.80 psf 2640.58 psf 2754.62 psf 2755.88 psf 3364.28 psf 3972.68 psf 4512.12 psf 4513.38 psf 5031.78 psf 5088.22 psf 5089.38 psf 5607.78 psf 5664.22 psf	30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 31.34 Kips	0.00 Kips 0.00 Kips 1.22 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 25.63 Kips 31.29 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips 31.34 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 4.99 ft	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips
5.00 ft	0.00 Kips	1.22 Kips	1.22 Kips
9.01 ft	3.51 Kips	1.55 Kips	5.06 Kips
18.01 ft	18.70 Kips	1.55 Kips	20.26 Kips
21.99 ft	28.65 Kips	1.55 Kips	30.20 Kips
22.01 ft	28.70 Kips	1.55 Kips	30.26 Kips
23.99 ft	34.26 Kips	1.55 Kips	35.82 Kips
24.01 ft	34.35 Kips	25.63 Kips	59.98 Kips
33.01 ft	94.35 Kips	31.29 Kips	125.63 Kips
42.01 ft	166.27 Kips	31.34 Kips	197.61 Kips
49.99 ft	240.02 Kips	31.34 Kips	271.36 Kips
50.01 ft	240.22 Kips	31.34 Kips	271.55 Kips
59.01 ft	333.78 Kips	31.34 Kips	365.12 Kips
59.99 ft	344.59 Kips	31.34 Kips	375.92 Kips
60.01 ft	344.81 Kips	31.34 Kips	376.15 Kips
69.01 ft	449.67 Kips	31.34 Kips	481.01 Kips
69.99 ft	461.70 Kips	31.34 Kips	493.04 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 43.01 ft 49.99 ft 50.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 840.60 psf 1380.60 psf 1619.40 psf 2640.29 psf 2697.31 psf 2755.54 psf 3059.74 psf 3363.94 psf 3633.66 psf 4513.09 psf 4772.29 psf 4800.51 psf 5348.29 psf 5376.51 psf	0.00 0.00 22.81 22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 3.51 Kips 18.70 Kips 28.65 Kips 28.70 Kips 34.26 Kips 34.35 Kips 94.35 Kips 166.27 Kips 240.02 Kips 240.02 Kips 333.78 Kips 344.59 Kips 344.59 Kips 449.67 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 49.99 ft 59.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2638.80 psf 2640.58 psf 2754.62 psf 2755.88 psf 3364.28 psf 3972.68 psf 4512.12 psf 4513.38 psf 5031.78 psf 5088.22 psf 5089.38 psf 5607.78 psf 5664.22 psf	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 31.34 Kips	0.00 Kips 0.00 Kips 1.22 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 25.63 Kips 31.29 Kips 31.34 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
4.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.00 ft	0.00 Kips	1.22 Kips	1.22 Kips
9.01 ft	3.51 Kips	1.55 Kips	5.06 Kips
18.01 ft	18.70 Kips	1.55 Kips	20.26 Kips
21.99 ft	28.65 Kips	1.55 Kips	30.20 Kips
22.01 ft	28.70 Kips	1.55 Kips	30.26 Kips
23.99 ft	34.26 Kips	1.55 Kips	35.82 Kips
24.01 ft	34.35 Kips	25.63 Kips	59.98 Kips
33.01 ft	94.35 Kips	31.29 Kips	125.63 Kips
42.01 ft	166.27 Kips	31.34 Kips	197.61 Kips
49.99 ft	240.02 Kips	31.34 Kips	271.36 Kips
50.01 ft	240.22 Kips	31.34 Kips	271.55 Kips
59.01 ft	333.78 Kips	31.34 Kips	365.12 Kips
59.99 ft	344.59 Kips	31.34 Kips	375.92 Kips
60.01 ft	344.81 Kips	31.34 Kips	376.15 Kips
69.01 ft	449.67 Kips	31.34 Kips	481.01 Kips
69.99 ft	461.70 Kips	31.34 Kips	493.04 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 840.60 psf 1380.60 psf 1619.40 psf 2640.29 psf 2697.31 psf 2755.54 psf 3059.74 psf 3363.94 psf 3633.66 psf 4513.09 psf 4772.29 psf 4800.51 psf 5089.09 psf 5348.29 psf 5376.51 psf	0.00 0.00 22.81 22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 3.51 Kips 18.70 Kips 28.65 Kips 28.70 Kips 34.26 Kips 34.35 Kips 94.35 Kips 166.27 Kips 240.02 Kips 240.02 Kips 240.22 Kips 333.78 Kips 344.59 Kips 344.59 Kips 449.67 Kips
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 21.99 ft 22.01 ft 23.99 ft 24.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft 60.01 ft 69.99 ft	Cohesionless	At Tip 0.00 psf 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2638.80 psf 2640.58 psf 2754.62 psf 2755.88 psf 3364.28 psf 3972.68 psf 4512.12 psf 4513.38 psf 5031.78 psf 5088.22 psf 5089.38 psf 5664.22 psf	Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	Bearing 1.55 Kips 1.54 Kips 31.34 Kips	Bearing 0.00 Kips 0.00 Kips 1.22 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 1.55 Kips 25.63 Kips 25.63 Kips 31.29 Kips 31.34 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 4.99 ft	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips
5.00 ft	0.00 Kips	1.22 Kips	1.22 Kips
9.01 ft	3.51 Kips	1.55 Kips	5.06 Kips
18.01 ft	18.70 Kips	1.55 Kips	20.26 Kips
21.99 ft	28.65 Kips	1.55 Kips	30.20 Kips
22.01 ft	28.70 Kips	1.55 Kips	30.26 Kips
23.99 ft	34.26 Kips	1.55 Kips	35.82 Kips
24.01 ft	34.35 Kips	25.63 Kips	59.98 Kips
33.01 ft	94.35 Kips	31.29 Kips	125.63 Kips
42.01 ft	166.27 Kips	31.34 Kips	197.61 Kips
49.99 ft	240.02 Kips	31.34 Kips	271.36 Kips
50.01 ft	240.22 Kips	31.34 Kips	271.55 Kips
59.01 ft	333.78 Kips	31.34 Kips	365.12 Kips
59.99 ft	344.59 Kips	31.34 Kips	375.92 Kips
60.01 ft	344.81 Kips	31.34 Kips	376.15 Kips
69.01 ft	449.67 Kips	31.34 Kips	481.01 Kips
69.99 ft	461.70 Kips	31.34 Kips	493.04 Kips

Filename: C:\HOLD\PIER-2.DVN

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\HOLD\PIER-3.DVN

Project Name: Opitz Pier-2 Project Date: 02/20/2020

Project Client: Transurban Computed By: SKK

Project Manager: MJ

PILE INFORMATION

Pile Type: H Pile - HP10X57

Top of Pile: 5.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

Ultimate Considerations:

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 23.00 ft

- Driving/Restrike 23.00 ft - Ultimate: 23.00 ft - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	24.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	16.00 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund
3	Cohesionless	10.00 ft	0.00%	120.00 pcf	38.0/38.0	Nordlund
4	Cohesionless	10.00 ft	0.00%	120.00 pcf	38.0/38.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft 39.99 ft 40.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 840.60 psf 1380.60 psf 1679.40 psf 2760.29 psf 2788.51 psf 2817.94 psf 3122.14 psf 3358.06 psf 3899.49 psf 4158.69 psf 4475.49 psf 4734.69 psf 4762.91 psf	0.00 0.00 22.81 22.81 22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 3.51 Kips 18.70 Kips 31.46 Kips 31.52 Kips 34.36 Kips 34.45 Kips 95.67 Kips 151.36 Kips 151.53 Kips 233.07 Kips 242.56 Kips 242.76 Kips 335.59 Kips 346.31 Kips
		<u>RESTRIKE - ENI</u>			
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft 50.01 ft 59.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf 4474.62 psf 4475.78 psf 4994.18 psf 5050.62 psf	30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
4.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.00 ft	0.00 Kips	7.41 Kips	7.41 Kips
9.01 ft	3.51 Kips	9.45 Kips	12.96 Kips
18.01 ft	18.70 Kips	9.45 Kips	28.15 Kips
22.99 ft	31.46 Kips	9.45 Kips	40.91 Kips
23.01 ft	31.52 Kips	9.45 Kips	40.96 Kips
23.99 ft	34.36 Kips	9.45 Kips	43.81 Kips
24.01 ft	34.45 Kips	159.35 Kips	193.81 Kips
33.01 ft	95.67 Kips	190.54 Kips	286.21 Kips
39.99 ft	151.36 Kips	190.54 Kips	341.90 Kips
40.01 ft	151.53 Kips	190.54 Kips	342.07 Kips
49.01 ft	233.07 Kips	190.54 Kips	423.61 Kips
49.99 ft	242.56 Kips	190.54 Kips	433.10 Kips
50.01 ft	242.76 Kips	190.54 Kips	433.30 Kips
59.01 ft	335.59 Kips	190.54 Kips	526.13 Kips
59.99 ft	346.31 Kips	190.54 Kips	536.85 Kips

DRIVING - SKIN FRICTION

Donth	Soil Type	Effective Stress	Sliding	Adhesion	Skin
Depth	Soil Type	At Midpoint	Friction Angle	Adriesion	Friction
0.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
4.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
5.00 ft	Cohesionless	600.00 psf	22.81	N/A	0.00 Kips
9.01 ft	Cohesionless	840.60 psf	22.81	N/A	3.51 Kips
18.01 ft	Cohesionless	1380.60 psf	22.81	N/A	18.70 Kips
22.99 ft	Cohesionless	1679.40 psf	22.81	N/A	31.46 Kips
23.01 ft	Cohesionless	2760.29 psf	22.81	N/A N/A	31.52 Kips
23.99 ft 24.01 ft	Cohesionless Cohesionless	2788.51 psf 2817.94 psf	22.81 28.89	N/A N/A	34.36 Kips 34.45 Kips
33.01 ft	Cohesionless	3122.14 psf	28.89	N/A N/A	95.67 Kips
39.99 ft	Cohesionless	3358.06 psf	28.89	N/A N/A	151.36 Kips
40.01 ft	Cohesionless	3899.49 psf	28.89	N/A	151.53 Kips
49.01 ft	Cohesionless	4158.69 psf	28.89	N/A	233.07 Kips
49.99 ft	Cohesionless	4186.91 psf	28.89	N/A	242.56 Kips
50.01 ft	Cohesionless	4475.49 psf	28.89	N/A	242.76 Kips
59.01 ft	Cohesionless	4734.69 psf	28.89	N/A	335.59 Kips
59.99 ft	Cohesionless	4762.91 psf	28.89	N/A	346.31 Kips
		DRIVING - END		·	
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
Depth	Soil Type			Limiting End Bearing	End Bearing
0.01 ft	Soil Type Cohesionless	Effective Stress At Tip 0.00 psf	Bearing Cap.	-	
0.01 ft 4.99 ft	Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf	Bearing Cap. Factor 30.00 30.00	Bearing 9.45 Kips 9.45 Kips	Bearing 0.00 Kips 0.00 Kips
0.01 ft 4.99 ft 5.00 ft	Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf	Bearing Cap. Factor 30.00 30.00 30.00	Bearing 9.45 Kips 9.45 Kips 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft	Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00	Bearing 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00	Bearing 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00	Bearing 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	Bearing 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	Bearing 9.45 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40	Bearing 9.45 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft 39.99 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 24.01 ft 33.01 ft 39.99 ft 40.01 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 39.99 ft 40.01 ft 49.01 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf 4474.62 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft 50.01 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf 4474.62 psf 4475.78 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 33.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft	Cohesionless	Effective Stress At Tip 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf 4474.62 psf	Bearing Cap. Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 190.54 Kips 190.54 Kips 190.54 Kips 190.54 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 4.99 ft	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips
5.00 ft	0.00 Kips	7.41 Kips	7.41 Kips
9.01 ft	3.51 Kips	9.45 Kips	12.96 Kips
18.01 ft	18.70 Kips	9.45 Kips	28.15 Kips
22.99 ft	31.46 Kips	9.45 Kips	40.91 Kips
23.01 ft	31.52 Kips	9.45 Kips	40.96 Kips
23.99 ft	34.36 Kips	9.45 Kips	43.81 Kips
24.01 ft	34.45 Kips	159.35 Kips	193.81 Kips
33.01 ft	95.67 Kips	190.54 Kips	286.21 Kips
39.99 ft	151.36 Kips	190.54 Kips	341.90 Kips
40.01 ft	151.53 Kips	190.54 Kips	342.07 Kips
49.01 ft	233.07 Kips	190.54 Kips	423.61 Kips
49.99 ft	242.56 Kips	190.54 Kips	433.10 Kips
50.01 ft	242.76 Kips	190.54 Kips	433.30 Kips
59.01 ft	335.59 Kips	190.54 Kips	526.13 Kips
59.99 ft	346.31 Kips	190.54 Kips	536.85 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 39.99 ft 40.01 ft 49.01 ft 49.99 ft 59.01 ft 59.99 ft	Cohesionless	0.00 psf 0.00 psf 600.00 psf 840.60 psf 1380.60 psf 1679.40 psf 2760.29 psf 2788.51 psf 2817.94 psf 3122.14 psf 3358.06 psf 3899.49 psf 4158.69 psf 4175.49 psf 4734.69 psf 4762.91 psf	0.00 0.00 22.81 22.81 22.81 22.81 22.81 22.81 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89 28.89	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 3.51 Kips 18.70 Kips 31.46 Kips 31.52 Kips 34.36 Kips 34.45 Kips 95.67 Kips 151.36 Kips 151.53 Kips 233.07 Kips 242.56 Kips 242.76 Kips 335.59 Kips 346.31 Kips
Depth	Soil Type	ULTIMATE - EN Effective Stress	D BEARING Bearing Cap.	Limiting End	End
0.01 ft 4.99 ft 5.00 ft 9.01 ft 18.01 ft 22.99 ft 23.01 ft 23.99 ft 24.01 ft 39.99 ft 40.01 ft 49.99 ft 50.01 ft 59.01 ft 59.99 ft	Cohesionless	At Tip 0.00 psf 0.00 psf 0.00 psf 600.00 psf 1081.20 psf 2161.20 psf 2758.80 psf 2760.58 psf 2817.02 psf 2818.28 psf 3426.68 psf 3898.52 psf 3899.78 psf 4418.18 psf 4474.62 psf 4475.78 psf 4994.18 psf 5050.62 psf	Factor 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40 110.40	Bearing 9.45 Kips 190.54 Kips	Bearing 0.00 Kips 0.00 Kips 7.41 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 9.45 Kips 159.35 Kips 159.54 Kips 190.54 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 4.99 ft	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips
5.00 ft	0.00 Kips	7.41 Kips	7.41 Kips
9.01 ft	3.51 Kips	9.45 Kips	12.96 Kips
18.01 ft	18.70 Kips	9.45 Kips	28.15 Kips
22.99 ft	31.46 Kips	9.45 Kips	40.91 Kips
23.01 ft	31.52 Kips	9.45 Kips	40.96 Kips
23.99 ft	34.36 Kips	9.45 Kips	43.81 Kips
24.01 ft	34.45 Kips	159.35 Kips	193.81 Kips
33.01 ft	95.67 Kips	190.54 Kips	286.21 Kips
39.99 ft	151.36 Kips	190.54 Kips	341.90 Kips
40.01 ft	151.53 Kips	190.54 Kips	342.07 Kips
49.01 ft	233.07 Kips	190.54 Kips	423.61 Kips
49.99 ft	242.56 Kips	190.54 Kips	433.10 Kips
50.01 ft	242.76 Kips	190.54 Kips	433.30 Kips
59.01 ft	335.59 Kips	190.54 Kips	526.13 Kips
59.99 ft	346.31 Kips	190.54 Kips	536.85 Kips

Filename: C:\HOLD\PIER-3.DVN

APPENDIX E.5 Abutment and Pier Piles

E.5.1 DRIVEN Analysis

E.5.2 Typical LPILE Analysis

E.5.3 Typical WEAP Analysis Results

LPILE Results Page 1 of 8

LPile for Windows, Version 2019-11.009

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

xx xx

Serial Number of Security Device: 239146869

This copy of LPile is licensed for exclusive use by:

Whitman, Requardt & Associates,

Use of this program by any entity other than Whitman, Requardt & Associates, is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

\Users\skesavan\Desktop\00 Opitz Geotech Report skk_Desktop\Program Runs\LPILE - Opitz Blvd\

Name of input data file: Abut Pile.lp11-B.lp11d

Name of output report file: Abut Pile.lp11-B.lp11o

Name of plot output file: Abut Pile.lp11-B.lp11p

Name of runtime message file: Abut Pile.lp11-B.lp11r

Date and Time of Analysis

Date: December 28, 2021 Time: 7:17:45

Problem Title

Project Name:Opitz Blvd Job Number:45893-001 Client: Transurban Engineer: skk

Description: HP 10x57 Pile

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed

LPILE Results Page 2 of 8

- Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 100.0000 in - Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1
Total length of pile = 30.000 ft
Depth of ground surface below top of pile = 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	10.2000
2	30.000	10.2000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a H weak axis steel pile

Length of section = 30.000000 ft Pile width = 10.000000 in Shear capacity of section = 0.0000 lbs

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees

Pile Batter Angle = 0.000 radians

= 0.000 degrees
0.000 radians

Soil and Rock Layering Information

LPILE Results Page 3 of 8

The soil profile is modelled using 2 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	0.0000	ft
Distance from top of pile to bottom of layer	=	10.000000	ft
Effective unit weight at top of layer	=	120.000000	pcf
Effective unit weight at bottom of layer	=	120.000000	pcf
Friction angle at top of layer	=	32.000000	deg.
Friction angle at bottom of layer	=	32.000000	deg.
Subgrade k at top of layer	=	100.000000	pci
Subgrade k at bottom of layer	=	100.000000	pci

Layer 2 is stiff clay with water-induced erosion

Distance from top of pile to top of layer Distance from top of pile to bottom of layer	=	10.000000 ft 40.000000 ft
Effective unit weight at top of layer	=	65.000000 pcf
Effective unit weight at bottom of layer	=	65.000000 pcf
Undrained cohesion at top of layer	=	3000. psf
Undrained cohesion at bottom of layer	=	3000. psf
Epsilon-50 at top of layer	=	0.0000
Epsilon-50 at bottom of layer	=	0.0000
Subgrade k at top of layer	=	0.0000 pci
Subgrade k at bottom of layer	=	0.0000 pci

NOTE: Default values for Epsilon-50 will be computed for this layer.

NOTE: Default values for subgrade k will be computed for this layer.

(Depth of the lowest soil layer extends 10.000 ft below the pile tip)

Summary of Input Soil Properties

Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Cohesion psf	Angle of Friction deg.	E50 or krm	kpy pci
1	Sand	0.00	120.0000		32.0000		100.0000
	(Reese, et al.)	10.0000	120.0000		32.0000		100.0000
2	Stiff Clay	10.0000	65.0000	3000.		default	default
	with Free Water	40.0000	65.0000	3000.		default	default

p-y Modification Factors for Group Action

Distribution of p-y modifiers with depth defined using 2 points

Point No.	Depth X ft	p-mult	y-mult
1	0.000	0.5000	1.0000
2	100.000	0.5000	1.0000

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

LPILE Results Page 4 of 8

Number of loads specified = 1

Load Analys	Load is	C	ondition		Condition	Axial Thrust	Compute Top y	Run
No.	Type		1		2	Force, lbs	vs. Pile Length	
1	2	V =	5000. lbs	S =	0.0000 in/in	50000.	No	Yes

V = shear force applied normal to pile axis

 ${\tt M}$ = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

 ${\tt R}$ = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Steel H Weak Axis:

Length of Section 30.000000 ft Flange Width 10.200000 in Section Depth 10.000000 in Flange Thickness 0.565000 in 0.565000 in Web Thickness Yield Stress of Pipe 50.000000 ksi Elastic Modulus 29000. ksi = Cross-sectional Area 16.537550 sq. in. 100.063738 in^4 Moment of Inertia Elastic Bending Stiffness 2901848. kip-in^2 Plastic Modulus, Z 30.099181in^3 = Plastic Moment Capacity = Fy Z 1505.in-kip

Axial Structural Capacities:

Nom. Axial Structural Capacity = Fy As = 826.877 kips Nominal Axial Tensile Capacity = -826.877 kips

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number Axial Thrust Force kips ----- 1 50.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 50.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Stress ksi	Run Msg
0.00000707	20.5060402	2901683.	19.8526161	4.0581718	
0.00001413	41.0120803	2901683.	12.4763081	5.0929212	
0.00002120	61.5181205	2901683.	10.0175387	6.1276706	

LPILE Results Page 5 of 8

0.00002827	82.0241606	2901683.	8.7881540	7.1624199	
0.00003533	102.5302008	2901683.	8.0505232	8.1971693	
0.00004240	123.0362409	2901683.	7.5587694	9.2319187	
0.00004947	143.5422811	2901683.	7.2075166	10.2666680	
0.00005654	164.0483212	2901683.	6.9440770	11.3014174	
0.00006360	184.5543614	2901683.	6.7391796	12.3361668	
0.00007067	205.0604015	2901683.	6.5752616	13.3709162	
0.00007774	225.5664417	2901683.	6.4411469	14.4056655	
0.00008480	246.0724818	2901683.	6.3293847	15.4404149	
0.00009187	266.5785220	2901683.	6.2348166	16.4751643	
0.00009894	287.0845621	2901683.	6.1537583	17.5099136	
0.0001060	307.5906023	2901683.	6.0835077	18.5446630	
0.0001131	328.0966424	2901683.	6.0220385	19.5794124	
0.0001131	348.6026826	2901683.	5.9678009	20.6141617	
0.0001272	369.1087227	2901683.	5.9195898	21.6489111	
0.0001343	389.6147629	2901683.	5.8764535	22.6836605	
0.0001413	410.1208030	2901683.	5.8376308	23.7184099	
0.0001484	430.6268432	2901683.	5.8025055	24.7531592	
0.0001555	451.1328833	2901683.	5.7705735	25.7879086	
0.0001625	471.6389235	2901683.	5.7414181	26.8226580	
0.0001696	492.1449636	2901683.	5.7146923	27.8574073	
0.0001767	512.6510038	2901683.	5.6901046	28.8921567	
0.0001837	533.1570439	2901683.	5.6674083	29.9269061	
0.0001908	553.6630841	2901683.	5.6463932	30.9616555	
	574.1691242				
0.0001979		2901683.	5.6268791	31.9964048	
0.0002049	594.6751644	2901683.	5.6087109	33.0311542	
0.0002120	615.1812045	2901683.	5.5917539	34.0659036	
0.0002191	635.6872447	2901683.	5.5758908	35.1006529	
0.0002261	656.1932848	2901683.	5.5610193	36.1354023	
0.0002201		2901683.	5.5470490	37.1701517	
	676.6993250				
0.0002403	697.2053651	2901683.	5.5339005	38.2049010	
0.0002473	717.7114053	2901683.	5.5215033	39.2396504	
0.0002544	738.2174454	2901683.	5.5097949	40.2743998	
0.0002615	758.7234856	2901683.	5.4987194	41.3091492	
0.0002685	779.2295257	2901683.	5.4882267	42.3438985	
0.0002756	799.7355659	2901683.	5.4782722	43.3786479	
0.0002730	840.7476462		5.4598199		
		2901683.		45.4481466	
0.0003039	881.7597265	2901683.	5.4430841	47.5176454	
0.0003180	922.7718068	2901683.	5.4278359	49.5871441	
0.0003321	962.4164303	2897566.	5.4155958	50.0000000	Y
0.0003463	999.6513162	2886826.	5.4073270	50.0000000	Y
0.0003604	1035.	2871023.	5.4023379	50.0000000	Y
0.0003745	1067.	2848392.	5.3986091	50.0000000	Y
0.0003713	1096.	2818785.	5.3949974	50.0000000	Y
0.0004028	1121.	2783546.	5.3914802	50.0000000	Y
0.0004169	1144.	2744866.	5.3880442	50.0000000	Y
0.0004311	1165.	2703409.	5.3845803	50.0000000	Y
0.0004452	1184.	2660196.	5.3813780	50.0000000	Y
0.0004594	1202.	2616018.	5.3782446	50.0000000	Y
0.0004735	1217.	2571164.	5.3750762	50.0000000	Y
0.0004876	1232.	2526177.	5.3719837	50.0000000	
					Y
0.0005018	1245.	2481377.	5.3689771	50.000000	Y
0.0005159	1257.	2437004.	5.3660446	50.0000000	Y
0.0005300	1268.	2393257.	5.3631753	50.0000000	Y
0.0005442	1279.	2350161.	5.3602583	50.0000000	Y
0.0005583	1288.	2307689.	5.3575367	50.0000000	Y
0.0005724	1297.	2266199.	5.3548510	50.0000000	Y
0.0005866	1306.	2225787.	5.3521928	50.0000000	Y
0.0006007	1313.	2186260.	5.3496625	50.0000000	Y
0.0006148	1320.	2147557.	5.3470911	50.0000000	Y
0.0006290	1327.	2110094.	5.3445261	50.0000000	Y
0.0006431	1333.	2073399.	5.3422306	50.0000000	Y
0.0006572	1339.	2037763.	5.3397170	50.0000000	Y
0.0006714	1345.	2003144.	5.3375681	50.0000000	Y
0.0006855	1350.	1969343.	5.3350864	50.0000000	Y
0.0006996	1355.	1936577.	5.3330058	50.0000000	Y
0.0007138	1359.	1904653.	5.3305992	50.0000000	Y
0.0007279	1364.	1873651.	5.3286529	50.0000000	Y
0.0007420	1368.	1843468.	5.3262951	50.0000000	Y
0.0007562	1372.	1814154.	5.3244201	50.0000000	Y
0.0007703	1375.	1785567.	5.3222471	50.0000000	Y
0.0007703	1379.	1757888.	5.3202203	50.0000000	
					Y
0.0007986	1382.	1730856.	5.3183398	50.0000000	Y
0.0008127	1385.	1704607.	5.3162858	50.0000000	Y
0.0008268	1388.	1679147.	5.3144922	50.0000000	Y
0.0008410	1391.	1654192.	5.3125858	50.0000000	Y
0.0008975	1401.	1561198.	5.3053851	50.0000000	Y

LPILE Results Page 6 of 8

0.0009540	1410.	1477492.	5.2987224	50.0000000	Y
0.0010106	1417.	1401820.	5.2924846	50.0000000	Y
0.0010671	1423.	1333162.	5.2865798	50.0000000	Y
0.0011236	1428.	1270678.	5.2809324	50.0000000	Y
0.0011802	1432.	1213612.	5.2756225	50.0000000	Y
0.0012367	1436.	1161292.	5.2708860	50.0000000	Y
0.0012933	1440.	1113223.	5.2660613	50.0000000	Y
0.0013498	1443.	1068800.	5.2617285	50.0000000	Y
0.0014063	1445.	1027852.	5.2575091	50.0000000	Y
0.0014629	1448.	989716.	5.2535615	50.0000000	Y
0.0015194	1450.	954391.	5.2498172	50.0000000	Y
0.0015759	1452.	921386.	5.2461350	50.0000000	Y
0.0016325	1454.	890581.	5.2427997	50.0000000	Y

Summary of Results for Nominal Moment Capacity for Section 1

		Nominal
Load	Axial	Moment
No.	Thrust kips	Capacity in-kips
1	50.000000000	1454.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Expering correction equivarent begins of Borr & Note Experis

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	F0	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	0.00	0.00	N.A.	No	0.00	95039.
2	10.0000	145.7845	No	No	95039.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Walvag of Dila Landing and Defloation

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number ${\bf 1}$

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head = 5000.0 lbs
Rotation of pile head = 0.000E+00 radians
Axial load at pile head = 50000.0 lbs

(Zero slope for this load indicates fixed-head conditions)

Deflect. Bending Slope Total Bending Soil Res. Soil Spr. Distrib. Depth Shear Х Moment Force S Stress Stiffness Es*H Lat. Load р У

LPILE Results Page 7 of 8

feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	lb/inch
0.00	0.1093	-196331.	5000.	0.00	13030.	2.90E+09	0.00	0.00	0.00
0.3000	0.1089	-178309.	4985.	-2.32E-04	12111.	2.90E+09	-8.1303	268.8014	0.00
0.6000	0.1077	-160353.	4939.	-4.42E-04	11196.	2.90E+09	-17.4257	582.7306	0.00
0.9000	0.1057	-142587.	4860.	-6.30E-04	10291.	2.90E+09	-26.8631	914.9076	0.00
1.2000	0.1031	-125137.	4747.	-7.96E-04	9401.	2.90E+09	-35.5697	1242.	0.00
1.5000	0.09997	-108120.	4605.	-9.41E-04	8534.	2.90E+09	-43.3193	1560.	0.00
1.8000	0.09634	-91640.	4438.	-0.00107	7694.	2.90E+09	-49.5718	1852.	0.00
2.1000	0.09230	-75782.	4251.	-0.00117	6886.	2.90E+09	-54.1275	2111.	0.00
2.4000	0.08792	-60609.	4051.	-0.00125	6113.	2.90E+09	-57.0830	2337.	0.00
2.7000	0.08327	-46162.	3842.	-0.00132	5376.	2.90E+09	-58.9179	2547.	0.00
3.0000	0.07842	-32468.	3628.	-0.00137	4678.	2.90E+09	-59.9597	2753.	0.00
3.3000	0.07342	-19545.	3416.	-0.00140	4020.	2.90E+09	-58.3003	2859.	0.00
3.6000	0.06833	-7372.	3203.	-0.00142	3399.	2.90E+09	-60.0322	3163.	0.00
3.9000	0.06321	4024.	2980.	-0.00142 -0.00141	3229.	2.90E+09	-63.7461	3630.	0.00
4.2000	0.05811	14593.	2745.		3767.	2.90E+09	-66.5331	4122.	0.00
4.5000 4.8000	0.05307 0.04815	24297. 33078.	2498. 2236.	-0.00138 -0.00135	4262. 4709.	2.90E+09 2.90E+09	-70.7978 -74.9876	4802. 5607.	0.00
5.1000	0.04337	40879.	1959.	-0.00135	5107.	2.90E+09 2.90E+09	-74.9676 -78.5696	6522.	0.00
5.4000	0.03877	47653.	1671.	-0.00130	5452.	2.90E+09 2.90E+09	-81.4732	7565.	0.00
5.7000	0.03438	53361.	1374.	-0.00123	5743.	2.90E+09 2.90E+09	-83.6383	8757.	0.00
6.0000	0.03438	57973.	1070.	-0.00113	5978.	2.90E+09	-85.0168	10122.	0.00
6.3000	0.02635	61470.	763.3427	-0.00112	6156.	2.90E+09	-85.5728	11691.	0.00
6.6000	0.02274	63844.	455.8020	-9.64E-04	6277.	2.90E+09	-85.2831	13503.	0.00
6.9000	0.01941	65098.	157.6534	-8.84E-04	6341.	2.90E+09	-80.3550	14904.	0.00
7.2000	0.01637	65297.		-8.03E-04	6351.	2.90E+09	-70.7287	15552.	0.00
7.5000	0.01363	64565.		-7.23E-04	6314.	2.90E+09	-61.3214	16200.	0.00
7.8000	0.01117	63023.		-6.43E-04	6236.	2.90E+09	-52.2754	16848.	0.00
8.1000	0.00899	60790.	-729.2401	-5.67E-04	6122.	2.90E+09	-43.7128	17496.	0.00
8.4000	0.00709	57976.		-4.93E-04	5978.	2.90E+09	-35.7354	18144.	0.00
8.7000	0.00545	54687.	-987.7343	-4.23E-04	5811.	2.90E+09	-28.4243	18792.	0.00
9.0000	0.00404	51017.	-1078.	-3.57E-04	5624.	2.90E+09	-21.8399	19440.	0.00
9.3000	0.00287	47052.	-1146.	-2.97E-04	5422.	2.90E+09	-16.0226	20088.	0.00
9.6000	0.00191	42870.	-1195.	-2.41E-04	5208.	2.90E+09	-10.9936	20736.	0.00
9.9000	0.00114	38535.	-1227.	-1.90E-04	4987.	2.90E+09	-6.7553	21384.	0.00
10.2000	5.38E-04	34104.	-1298.	-1.45E-04	4762.	2.90E+09	-32.9266	220320.	0.00
10.5000	9.11E-05	29239.	-1368.	-1.06E-04	4514.	2.90E+09	-5.7391	226800.	0.00
10.8000	-2.25E-04	24293.	-1352.	-7.28E-05	4262.	2.90E+09	14.5948	233280.	0.00
11.1000	-4.33E-04	19531.	-1274.	-4.56E-05	4019.	2.90E+09	28.8411	239760.	0.00
11.4000	-5.54E-04	15138.	-1154.	-2.41E-05	3795.	2.90E+09	37.8690	246240.	0.00
11.7000	-6.07E-04	11233.	-1009.	-7.75E-06	3596.	2.90E+09	42.5846	252720.	0.00
12.0000	-6.09E-04	7876.	-853.3121	4.11E-06	3425.	2.90E+09	43.8788	259200.	0.00
12.3000	-5.77E-04	5087.	-697.6741	1.21E-05	3283.	2.90E+09	42.5868	265680.	0.00
12.6000	-5.22E-04	2849.	-549.9887	1.71E-05	3169.	2.90E+09	39.4606	272160.	0.00
12.9000	-4.54E-04	1121. -151.1912	-415.6872	1.95E-05 2.01E-05	3081. 3031.	2.90E+09 2.90E+09	35.1513 30.2012	278640. 285120.	0.00
13.2000 13.5000	-3.81E-04 -3.09E-04	-151.1912	-298.0527 -198.6119	2.01E-05 1.94E-05	3031. 3076.	2.90E+09 2.90E+09	25.0437	285120. 291600.	0.00
	-3.09E-04 -2.42E-04	-1588.			3104.	2.90E+09 2.90E+09	20.0081	291000.	0.00
14.1000	-1.81E-04	-1885.	-53.9110	1.76E-05	3119.	2.90E+09 2.90E+09	15.3295	304560.	0.00
14.4000		-1982.	-6.2289	1.32E-05	3124.	2.90E+09	11.1606	311040.	0.00
14.7000		-1934.	27.5133	1.08E-05	3121.	2.90E+09	7.5851	317520.	0.00
15.0000	-5.15E-05	-1788.	49.5034	8.48E-06	3115.	2.90E+09	4.6317	324000.	0.00
15.3000	-2.49E-05	-1581.	61.9570	6.39E-06	3104.	2.90E+09	2.2870	330480.	0.00
15.6000	-5.42E-06	-1344.	66.9870	4.58E-06	3092.	2.90E+09	0.5075	336960.	0.00
15.9000	8.07E-06	-1100.	66.5156	3.06E-06	3079.	2.90E+09	-0.7694	343440.	0.00
16.2000	1.66E-05	-866.1557	62.2196	1.84E-06	3068.	2.90E+09	-1.6173	349920.	0.00
16.5000	2.13E-05	-652.8803	55.5051	9.02E-07	3057.	2.90E+09	-2.1130	356400.	0.00
16.8000	2.31E-05	-466.8437	47.5045	2.07E-07	3047.	2.90E+09	-2.3318	362880.	0.00
17.1000	2.28E-05	-310.9225	39.0899	-2.75E-07	3039.	2.90E+09	-2.3430	369360.	0.00
17.4000	2.12E-05	-185.2972	30.8977	-5.83E-07	3033.	2.90E+09	-2.2082	375840.	0.00
17.7000	1.86E-05	-88.2490	23.3599	-7.53E-07	3028.	2.90E+09	-1.9795	382320.	0.00
18.0000	1.57E-05	-16.8349	16.7385	-8.18E-07	3024.	2.90E+09	-1.6991	388800.	0.00
18.3000	1.28E-05	32.5627		-8.08E-07	3025.	2.90E+09	-1.4000	395280.	0.00
18.6000	9.91E-06	63.8088		-7.48E-07	3027.	2.90E+09	-1.1064	401760.	0.00
18.9000	7.36E-06	80.7014		-6.59E-07	3028.	2.90E+09	-0.8349	408240.	0.00
19.2000	5.17E-06	86.7552		-5.55E-07	3028.	2.90E+09	-0.5958	414720.	0.00
19.5000	3.37E-06	85.0680		-4.48E-07	3028.	2.90E+09	-0.3941	421200.	0.00
19.8000	1.94E-06	78.2543		-3.47E-07	3027.	2.90E+09	-0.2311	427680.	0.00
20.1000	8.71E-07	68.4287		-2.56E-07	3027.	2.90E+09	-0.1050	434160.	0.00
20.4000	1.03E-07	57.2265		-1.78E-07	3026.	2.90E+09	-0.01255	440640.	0.00
20.7000	-4.10E-07	45.8490		-1.14E-07	3026.	2.90E+09	0.05095	447120.	0.00
21.0000	-7.18E-07	35.1216		-6.38E-08	3025.	2.90E+09	0.09050	453600.	0.00
21.3000	-8.69E-07	25.5592		-2.61E-08	3025.	2.90E+09	0.1111	460080.	0.00
21.6000 21.9000	-9.06E-07 -8.65E-07	17.4311 10.8215	-2.0469 -1.6307	5.42E-10 1.81E-08	3024. 3024.	2.90E+09 2.90E+09	0.1175 0.1137	466560. 473040.	0.00
22.2000	-8.65E-07	5.6833	-1.8307	2.83E-08	3024.	2.90E+09 2.90E+09	0.1137	473040.	0.00
44.4000	7.705-07	5.0033	-1.4339	2.036-00	5044.	△. J ∪ E T U J	0.1034	T1334U.	0.00

LPILE Results Page 8 of 8

22.5000	-6.62E-07	1.8839	-0.8930	3.30E-08	3024.	2.90E+09	0.08933	486000.	0.00
22.8000	-5.39E-07	-0.7583	-0.5996	3.37E-08	3023.	2.90E+09	0.07369	492480.	0.00
23.1000	-4.19E-07	-2.4452	-0.3624	3.17E-08	3024.	2.90E+09	0.05808	498960.	0.00
23.4000	-3.10E-07	-3.3789	-0.1794	2.81E-08	3024.	2.90E+09	0.04357	505440.	0.00
23.7000	-2.17E-07	-3.7471	-0.04550	2.37E-08	3024.	2.90E+09	0.03082	511920.	0.00
24.0000	-1.40E-07	-3.7151	0.04623	1.90E-08	3024.	2.90E+09	0.02014	518400.	0.00
24.3000	-7.96E-08	-3.4211	0.1034	1.46E-08	3024.	2.90E+09	0.01160	524880.	0.00
24.6000	-3.46E-08	-2.9761	0.1334	1.07E-08	3024.	2.90E+09	0.00511	531360.	0.00
24.9000	-2.88E-09	-2.4642	0.1434	7.28E-09	3024.	2.90E+09	4.30E-04	537840.	0.00
25.2000	1.78E-08	-1.9461	0.1393	4.54E-09	3024.	2.90E+09	-0.00269	544320.	0.00
25.5000	2.98E-08	-1.4626	0.1263	2.43E-09	3023.	2.90E+09	-0.00456	550800.	0.00
25.8000	3.53E-08	-1.0379	0.1082	8.78E-10	3023.	2.90E+09	-0.00547	557280.	0.00
26.1000	3.61E-08	-0.6838	0.08819	-1.90E-10	3023.	2.90E+09	-0.00566	563760.	0.00
26.4000	3.39E-08	-0.4029	0.06832	-8.64E-10	3023.	2.90E+09	-0.00538	570240.	0.00
26.7000	2.99E-08	-0.1915	0.05002	-1.23E-09	3023.	2.90E+09	-0.00479	576720.	0.00
27.0000	2.51E-08	-0.04230	0.03408	-1.38E-09	3023.	2.90E+09	-0.00406	583200.	0.00
27.3000	2.00E-08	0.05433	0.02087	-1.37E-09	3023.	2.90E+09	-0.00328	589680.	0.00
27.6000	1.52E-08	0.1085	0.01045	-1.27E-09	3023.	2.90E+09	-0.00252	596160.	0.00
27.9000	1.09E-08	0.1300	0.00265	-1.12E-09	3023.	2.90E+09	-0.00182	602640.	0.00
28.2000	7.11E-09	0.1280	-0.00279	-9.62E-10	3023.	2.90E+09	-0.00120	609120.	0.00
28.5000	3.94E-09	0.1103	-0.00617	-8.14E-10	3023.	2.90E+09	-6.73E-04	615600.	0.00
28.8000	1.25E-09	0.08387	-0.00777	-6.94E-10	3023.	2.90E+09	-2.16E-04	622080.	0.00
29.1000	-1.06E-09	0.05463	-0.00782	-6.08E-10	3023.	2.90E+09	1.85E-04	628560.	0.00
29.4000	-3.12E-09	0.02776	-0.00650	-5.56E-10	3023.	2.90E+09	5.51E-04	635040.	0.00
29.7000	-5.06E-09	0.00803	-0.00388	-5.34E-10	3023.	2.90E+09	9.03E-04	641520.	0.00
30.0000	-6.97E-09	0.00	0.00	-5.29E-10	3023.	2.90E+09	0.00125	324000.	0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

```
Output Summary for Load Case No. 1:
```

```
0.10932575 inches
Pile-head deflection
                                       0.000000 radians
Computed slope at pile head = Maximum bending moment =
Maximum bending moment
                                          -196331. inch-lbs
                                            5000. lbs
Maximum shear force
                                  =
Depth of maximum bending moment =
                                         0.000000 feet below pile head
Depth of maximum shear force = Number of iterations =
                                          0.000000 feet below pile head
Number of iterations
                                                10
Number of zero deflection points =
```

Summary of Dile-head Desponses for Conventional Analyses

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

Load Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case Type	Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, lb	5000.	S, rad	0.00	50000.	0.1093	0.00	5000.	-196331.

```
Maximum pile-head deflection = 0.1093257457 inches Maximum pile-head rotation = -0.0000000000 radians = -0.0000000 deg.
```

The analysis ended normally.

APPENDIX E.5 Abutment and Pier Piles

- E.5.1 DRIVEN Analysis
- **E.5.2** Typical LPILE Analysis
- E.5.3 Typical WEAP Analysis Results

APPENDIX E.6 MOT Pavement Section

E.6.1 Pavement Analyses

E.6.2 Record Drawings

5

Whitman, Requardt & Associates, LLP Engineers - Architects - Environmental Planners Est. 1915

Design Per VDOT Specifications

Ver.04.10 skk

9/14/2021

Ver.4.10 Sheet 1 of 2 1. Project Data Project: Optiz Blvd **Section:** MOT Pavement Section Design: skk Woodbridge, VA Station: I-95 GP SB Shoulders Check: jmb 45893-001 WRA# Date: 1/28/2022 2. Traffic Growth Rate Traffic Grouth Rate Provided? Given/Assumed 2.00% Given Growth Rate (g):

3. Design Year Average Daily Traffic (ADT)

Construction/Design Year

ADT for Design Year Given?

Needs to be Estimated

ADT for Design Year Given?

Needs to be Estimated

Data & Calculation of Data Used Year 2018

Design Year ADT

ADT

One of the Estimated Solution of Data Used Year 2018

Given ADT Data g: 2.00%

Calculated ADT: 72731

Project ADT for Cons. Year: 72,731

4. Data for Pavement Design Initial Structural Design Life (Performance Period) 0.5 years (for calculation of Z_R) 95 % Calculated Z_R= -1.645 Reliability R (%) Initial Serviceability 4.2 (**PSI**)₁ Calcualted Δ (PSI) = Terminal Serviceability 2.8 $(PSI)_2$ 1.4 7.42% Percent Truck Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.33 Method AASHTO 1993 **Overall Standard Deviation** 0.49 Calculated M_R = 5,000

5.	Rigorous	s ESAL Calculation	ns							
	Data	ADT= 72,731	Lane dis.	100%	Dir.Dis.	70%	g=	2.00%	n=	0.5
	Class	Vehcle Type	% ADT	ADT by Type	Growth factor	Design	Traffic	ESAL Factor	Desig	n ESAL
	1	Car	92.58	67,334	0.498	8	3,559,379	0.0002		1,712
	2	Single Unit Trucks	1.60	1,164	0.498		147,926	0.46		68,046
	3	Combined Trucks	5.82	4,233	0.498		538,082	1.05		564,986
		Total:	100.00	72,731				ESAL		634,744
						Equiv	alent Tru	ck Factor	0.9253	

Whitman, Requardt & Associates, LLP Engineers - Architects - Environmental Planners Est. 1915

Design Per VDOT Specifications

Ver.04.10 skk

9/14/2021

Sheet 2 of 2

Project: Optiz Blvd

Woodbridge, VA

WRA# 45893-001

Design: skk

Section: MOT Pavement Section

Station: I-95 GP SB Shoulders

Date: 1/28/2022

Check: jmb

6.	Calculated	Design Srue	ctural Number

ADT 7	2,731 g:	2.00%	•	Growt	h Factor	0.498	Truc	k Factor:	0.9253
Traffic	26,546,815	per year		Wt 18	(18kips	SESAL) =		634,744	
Calculat	ted Resilient Modu	ılus M _r	5000 p	si	per	AASHTO	1993		
Reliability S	Standard Dev. Z _R	-1.645	Δ	(PSI) =	1.4	Ov	erall STD	0.49	
		-	.	(Calculate	d Design	Structural	Number:	4.310

. Specifie	d La	yer and Lift Design			(VDOT S	pecificatio	ns)		
			Ctruct	Drainaga	Selected	Check	Layer Lif	t Thickness	Calculatd
Lift ID		Layer Description	Struct. Coeff.	Drainage Coeff.	Thickness	Thickness	Min.	Max	SN
			Coen.	COEII.	(in)	Limits	(in)	(in)	SIN
1	05.	SMA 12.5	0.44	1.0	2.00	-Ok-	1.50	3.00	0.88
2	09.	BM-25.0	0.44	1.0	3.00	-Ok-	2.50	4.00	1.32
3	09.	BM-25.0	0.44	1.0	4.00	-Ok-	2.50	4.00	1.76
4	11.	Agg.Base	0.12	1.0	6.00	-Ok-	3.00	8.00	0.72
Totals:		Total	Pavement 1	Thickness=	15 inches			Total SN=	4.680
					R	equired S	N	4.310	Ok

1 SMA 12.5 2.0 inch 5	
2 BM-25.0 7.0 inch 9	
3 Agg.Base 6.0 inch 11	

€.	Notes					
					_	

Total:

100.00

72,731

Whitman, Requardt & Associates, LLP Engineers - Architects - Environmental Planners Est. 1915

Design Per VDOT Specifications

Ver.04.10 skk

ESAL

Equivalent Truck Factor 6.8655

51,756,880

/14/2021

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Project: Optiz Blvd
Woodbridge, VA Assymed Assyme
Traffic Growth RateTraffic Growth RateGiven/AssumedGiven Growth Rate (g): 2.00Data & Calculation of Traffic Growth RateYear ADTTime Duration Calculated gGrowth Rate for Design: 2.00Design Year Average Daily Traffic (ADT)Construction/Design Year ADT for Design Year ADT for Design Year ADTNeeds to be Estimated Design Given ADT DataGiven ADT DataData & Calculation of Design Year ADTData Used Year 2018 ADT Growth
Traffic Growth Rate Traffic Growth Rate Provided? Data & Calculation of Traffic Growth Rate ADT Design Year Average Daily Traffic (ADT) Construction/Design Year ADT for Design Year Given? Data & Calculation of Design Year ADT Data & Calculation of Design Year ADT ADT Data & Calculation of Design Year ADT Data Calculation of Design Year ADT Data Serviceability (Performance Period) Terminal Serviceability (PSI) ₁ Terminal Serviceability (PSI) ₂ Percent Truck Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) Design Lane Factor/Distribution (Note 2) Rigorous ESAL Calculations Data ADT ADT by Growth Type Factor Pesign Traffic Capt Given ADT Data 99: 2.00% Calculated ADT: 72731 Project ADT for Cons. Year: 72.7 72.7 72.7 Project ADT for Cons. Year: 72.7 1.00% Calculated Z_R -1.6 1.00% Assumed (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir. Dis. Type Factor Design Traffic Factor Design Traffic Factor Design Traffic Factor Design ESAL Factor Design Traffic Factor Design ESAL Factor Design Traffic Factor Design ESAL Factor Design ESAL Factor Design ESAL Factor Design ESAL Factor Design Traffic Factor Design Traffic Factor Design ESAL Factor Design ESAL Design ESAL Factor Design ESAL Design ESAL Factor Design ESAL
Traffic Grouth Rate Provided? Data & Calculation of Traffic Growth Rate ADT Traffic Growth Rate ADT Traffic Growth Rate Traffic Growth Rate ADT Traffic Growth Rate Traffic Growth Rate Growth Rate for Design: Calculated g Growth Rate for Design: 2.00 Design Year Average Daily Traffic (ADT) Construction/Design Year ADT Data & Calculation of Design Year ADT Data Scalculation of Design Year ADT Data Scalculation of Design Year ADT Data Growth Rate for Design: Given ADT Data Project ADT for Cons. Year: 72,7 Data for Pavement Design Initial Structural Design Life (Performance Period) Initial Structural Design Life (Performance Period) Initial Serviceability (PSI) ₁ Terminal Serviceability (PSI) ₂ Percent Truck Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) Dosign Lane Factor/Distribution (Note 2) Town Subgrade CBR (for M_R calculations) Overall Standard Deviation Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Type Factor Type Factor Fact
Traffic Grouth Rate Provided? Data & Calculation of Traffic Growth Rate ADT Traffic Growth Rate ADT Traffic Growth Rate Given Growth Rate (g): 2.00 Time Duration Calculated g Growth Rate for Design: 2.00 Calculated Traffic Growth Rate for Design: 2.00 Design Year Average Daily Traffic (ADT) Construction/Design Year ADT for Design Year Given? Data & Calculation of Data Used Year 2018 Design Year ADT Data Scalculation of Data Used Year 2018 Design Year ADT Data for Pavement Design Initial Structural Design Life (Performance Period) Initial Structural Design Life (Performance Period) Initial Serviceability (PSI) ₁ Percent Truck Truck Factor Needs to be Estimated Truck Factor Needs to be Estimated Initial Structural Split/Distribution (Note 1) Directional Split/Distribution (Note 2) Subgrade CBR (for M_R calculations) Overall Standard Deviation Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% G= 2.00% n= 30 Class Vehcle Type % ADT Type factor proper factor Design Traffic Factor Factor Factor Factor Pass AL Fac
Data & Calculation of Traffic Growth Rate ADT Time Duration Calculated g Growth Rate for Design: 2.00 Design Year Average Daily Traffic (ADT) Construction/Design Year ADT ADT 2022 ADT for Design Year Given? Data & Calculation of Design Year ADT ADT 67,192 Data for Pavement Design Initial Structural Design Life (Performance Period) Reliability R (%) (for calculation of Z_R) Terminal Serviceability (PSI) ₁ Terminal Serviceability (PSI) ₂ Percent Truck Truck Factor Needs to be Estimated Directional Split/Distribution (Note 1) Design Lane Factor/Distribution (Note 2) Rigorous ESAL Calculations Data ADT - 72,731 Lane dis. 100% Dir.Dis. 70% S_R 2.00% S_R 2.00% S_R 3.00%
Traffic Growth Rate ADT Growth Rate for Design: 2.00 Design Year Average Daily Traffic (ADT) Construction/Design Year 2022 ADT for Design Year Given? Needs to be Estimated Data & Calculation of Data Used Year 2018 Design Year ADT ADT 67,192 Data for Pavement Design Initial Structural Design Life (Performance Period) 30 years Reliability R (%) (for calculation of Z_R) 95 % Calculated Z_R -1.6 Initial Serviceability (PSI) ₁ 4.2 Terminal Serviceability (PSI) ₂ 2.8 Calculated Z_R -1.6 Initial Serviceability (PSI) ₂ 2.8 Calculated Z_R -1.6 Initial Serviceability (PSI) ₂ 2.8 Calculated Z_R -1.6 Initial Serviceability (PSI) ₂ 3.3 Method Assumed Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R 5.6 Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% G= 2.00% n= 30 Class Vehcle Type % ADT Type factor Design Traffic Factor Design ESAL Factor I Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Growth Rate for Design: 2.00 Design Year Average Daily Traffic (ADT) Construction/Design Year ADT Data & Calculation of Design Year ADT Data Used Year 2018 Design Year ADT Given ADT Data Great Given? g: 2.00% Calculated ADT: 72731 Data & Calculation of Design Year ADT ADT 67,192 Calculated ADT: 72731 Project ADT for Cons. Year: 72,73 Data for Pavement Design Initial Structural Design Life (Performance Period) 30 years Reliability R (%) (for calculation of Z _R) 95 % Calculated Z _R = -1.6 Initial Serviceability (PSI)₁ 4.2 Terminal Serviceability (PSI)₂ 2.8 Calcualted Δ (PSI) = -1.6 Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) Directional Split/Distribution (Note 2) Town Subgrade CBR (for M _R calculations) Overall Standard Deviation Data ADT= 72,731 Lane dis. 100% Dir. Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT Type factor Type factor Design Traffic Factor Design ESAL Factor Design ESAL Factor
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Construction/Design Year ADT for Design Year Given? Needs to be Estimated Data & Calculation of Design Year ADT ADT 67,192
Construction/Design Year ADT for Design Year Given? Needs to be Estimated Data & Calculation of Design Year ADT ADT 67,192
ADT for Design Year Given? Needs to be Estimated Data & Calculation of Design Year ADT Design Year ADT ADT ADT ADT ADT ADT ADT ADT
Data & Calculation of Design Year ADTData Used Year2018 ADTg: 2.00% Calculated ADT: 72731Project ADT for Cons. Year: 72,7Data for Pavement DesignInitial Structural Design Life (Performance Period)30 yearsReliability R (%) (for calculation of Z_R)95 % Calculated Z_R = -1.6Initial Serviceability (PSI)14.2Terminal Serviceability (PSI)22.8 Calcualted Δ (PSI) =Percent Truck1.00%Assumed(See Sec 5 for truck factor Estimation)Directional Split/Distribution (Note 1)Design Lane Factor/Distribution (Note 2)Subgrade CBR (for M_R calculations)3.3 Method AASHTO 1993Overall Standard DeviationOverall Standard DeviationData ADT = 72,731 Lane dis. 100% Dir.Dis. 70% g = 2.00% n = 30Class Vehcle Type % ADT Type factorGrowth FactorESAL FactorDesign ESAL1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,52 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Design Year ADTADT67,192Calculated ADT: 72731Project ADT for Cons. Year: 72,7Data for Pavement DesignInitial Structural Design Life (Performance Period)30 yearsReliability R (%) (for calculation of Z_R)Pinitial Serviceability (PSI)14.2Terminal Serviceability (PSI)22.8Calculated Δ (PSI) =Percent Truck1.00% AssumedTruck Factor Needs to be Estimated(See Sec 5 for truck factor Estimation)Directional Split/Distribution (Note 1)Design Lane Factor/Distribution (Note 2)Subgrade CBR (for M_R calculations)3.3Method AASHTO 1993Overall Standard DeviationRigorous ESAL CalculationsData ADT = 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30Class Vehcle Type % ADT ADT by Type factorDesign Traffic ESAL FactorDesign ESAL Factor1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,52 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Data for Pavement DesignInitial Structural Design Life (Performance Period)30 yearsReliability R (%) (for calculation of Z_R)95 % Calculated Z_R = -1.6Initial Serviceability(PSI)14.2Terminal Serviceability(PSI)22.8 Calcualted Δ (PSI) =Percent Truck1.00% AssumedTruck FactorNeeds to be Estimated(See Sec 5 for truck factor Estimation)Directional Split/Distribution(Note 1)100%Design Lane Factor/Distribution(Note 2)70%Subgrade CBR (for M_R calculations)3.3 Method AASHTO 1993Overall Standard Deviation0.49 Calculated M_R = 5,0Rigorous ESAL CalculationsData ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30Class Vehcle Type% ADT ADT by Type factorDesign Traffic ESAL Factor FactorDesign ESAL Factor Factor1 Car92.58 67,334 40.568 697,930,351 0.0002 139,52 Single Unit Trucks1.60 1,164 40.568 12,061,877 0.46 5,548,4
Initial Structural Design Life (Performance Period) Reliability R (%) (for calculation of Z_R) Initial Serviceability (PSI) ₁ Terminal Serviceability (PSI) ₂ Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) Design Lane Factor/Distribution (Note 2) Subgrade CBR (for M_R calculations) Overall Standard Deviation Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% $g = 2.00\%$ $n = 30$ Class Vehcle Type % ADT ADT by Factor Factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,44
Initial Structural Design Life (Performance Period) Reliability R (%) (for calculation of Z_R) Initial Serviceability (PSI) ₁ Terminal Serviceability (PSI) ₂ Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated Directional Split/Distribution Note 1) Design Lane Factor/Distribution (Note 2) Subgrade CBR (for M_R calculations) Overall Standard Deviation Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. Class Vehcle Type % ADT ADT by Type factor 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Reliability R (%) (for calculation of Z_R) 95 % Calculated Z_R = -1.6 Initial Serviceability (PSI) ₁ 4.2 Terminal Serviceability (PSI) ₂ 2.8 Calculated Δ (PSI) = Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Initial Serviceability $(PSI)_1$ 4.2 Terminal Serviceability $(PSI)_2$ 2.8 Calcualted Δ $(PSI) = $ Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated $M_R = $ 5,0 Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% g = 2.00% n = 30 Class Vehcle Type % ADT ADT by Type factor Design Traffic ESAL Factor 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Terminal Serviceability $(PSI)_2$ 2.8 Calcualted Δ (PSI) = Percent Truck 1.00% Assumed Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g = 2.00% g = 30 Class Vehcle Type % ADT ADT by Type factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Percent Truck Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Truck Factor Needs to be Estimated (See Sec 5 for truck factor Estimation) Directional Split/Distribution (Note 1) 100% Design Lane Factor/Distribution (Note 2) 70% Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type factor factor factor factor factor factor factor factor pesign Traffic Factor Design ESAL Factor 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Subgrade CBR (for M_R calculations) 3.3 Method AASHTO 1993 Overall Standard Deviation 0.49 Calculated M_R = 5,0 Rigorous ESAL Calculations Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Rigorous ESAL Calculations Data ADT = 72,731 Lane dis. 100% Dir.Dis. 70% g = 2.00% n = 30 Class Vehcle Type % ADT ADT by Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Data ADT= 72,731 Lane dis. 100% Dir.Dis. 70% g= 2.00% n= 30 Class Vehcle Type % ADT ADT by Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Class Vehcle Type % ADT Type Growth factor Design Traffic ESAL Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
Class Vencie Type % ADT Type factor Design Traffic Factor Design ESAL 1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
1 Car 92.58 67,334 40.568 697,930,351 0.0002 139,5 2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
2 Single Unit Trucks 1.60 1,164 40.568 12,061,877 0.46 5,548,4
3 COMMINGU MUCKS 3.02 4,233 40.300 43,073,077 1.03 40,000,0

Whitman, Requardt & Associates, LLP Engineers · Architects · Environmental Planners Est. 1915

Design Per VDOT Specifications

Ver.04.10 skk

9/14/2021

Sheet 2 of 2

Project: Optiz Blvd

Woodbridge, VA

WRA# 45893-001

Design: skk

Section: Mainline Sections **Station:** Express Lanes

Date: 1/28/2022 Check: jmb

υ.	Calculat	eu Desi	gii Siucturai Nullibei							
	ADT	72,731	g: 2.00%		Growth	Factor	40.568	Т	ruck Factor:	6.8655
	Traffic	2	26,546,815 per year		Wt 18	(18kips	ESAL) =		51,756,880	
	Calcu	lated Re	silient Modulus Mr	5000 psi	ре	er	AASHTO	1993		

Reliability Standard Dev. Z_R -1.645 Δ (PSI) = 1.4 Overall STD 0.49

> Calculated Design Structural Number: 7.930

Specifie	d Layer and Lift Design			(VDOT S	pecificatio	ns)				
		Struct.	Drainago	Selected	Check	Layer Lift	Thickness	Calculatd		
Lift ID	Layer Description	Coeff.	Drainage Coeff.	Thickness	Thickness	Min.	Max	- SN		
		COCII.	COCII.	(in)	Limits	(in)	(in)			
1	05. SMA 12.5	0.44	1.0	2.00	-Ok-	1.50	3.00	0.88		
2	07. IM-19.0	0.44	1.0	2.00	-Ok-	2.00	3.00	0.88		
3	09. BM-25.0	0.44	1.0	3.00	-Ok-	2.50	4.00	1.32		
4	09. BM-25.0	0.44	1.0	4.00	-Ok-	2.50	4.00	1.76		
5	09. BM-25.0	0.44	1.0	4.00	-Ok-	2.50	4.00	1.76		
6	11. Agg.Base	0.12	1.0	6.00	-Ok-	3.00	8.00	0.72		
7	11. Agg.Base	0.12	1.0	6.00	-Ok-	3.00	8.00	0.72		
Totals:	Total	Pavement T	hickness=	27 inches			Total SN=	8.040		
	Required SN 7.930									

Summary of P	avement Section	Total Num	ber of Layers:	4
Layer No	Layer Description	Layer Thickne		
1	SMA 12.5	2.0 inch	5	-
2	IM-19.0	2.0 inch	7	
3	BM-25.0	11.0 inch	9	-
4	Agg.Base	12.0 inch	11	

9.	Notes	

APPENDIX E.6 MOT Pavement Section

E.6.1 Pavement Analyses

E.6.2 Record Drawings

PROJECT MANAGER Jeffrey_S.Dally.P.E_(703)259:2993......
SURVEYED BY V.DOT_.NOVA_District.Survey..........
DESIGN SUPERVISED BY Thomas_H.Hell.P.E.(703)246-0028DESIGNED BY Rummel.Klepper_8_Kahl.L.P...(703)246-0028

THIS PROJECT WAS DEVELOPED UTILIZING THE DEPARTMENT'S ENGINEERING DESIGN PACKAGE (GEOPAK).

FOR INDEX OF SHEETS SEE SHEET 1B

GEOPAK Computer Identification No. 94105

COMMONWEALTH OF VIRGINIA DEPARTMENT OF TRANSPORTATION

ALL CONSTRUCTION IS TO BE PERFORMED WITHIN EXISTING RIGHT OF WAY.

AND PROFILE OF PROPOSED PLAN STATE HIGHWAY

FHWA 534 DATA 4A121 HSIP-095-2(521) 95 VA. (F0) 0095-076-005 (SEE TABULATION BELOW FOR SECTION NUMBERS) (SEE TABULATION BELOW FOR SECTION NUMBERS) UPC 94105

FUNCTIONAL CLASSIFICATION AND TRAFFIC DATA URBAN PRINCIPAL ARTERIAL FREEWAY - 70mph MIN. DESIGN SPEED Fr: 1.18 MILES S. OF DUMFRIES ROAD ADT (2012) ADT (2034) 104,000 9,500 D (%) (design hour 60 T (%) (design hour V (MPH) 70 (DESIGN), 65 (POSTED)

PRINCE WILLIAM COUNTY I-95 LEFT SHOULDER & AUXILIARY LANES IMPROVEMENTS FROM: 1.18 MILES S. OF DUMFRIES ROAD TO: 0.18 MILES N. OF PRINCE WILLIAM COUNTY

CONVENTIONAL SIGNS

STATE LINE	
COUNTY LINE	
CITY,TOWN OR VILLAGE	· · · · · · — — — — — — — — — — — — — —
RIGHT OF WAY LINE	
FENCE LINE	
UNFENCED PROPERTY LINE	
FENCED PROPERTY LINE	
WATER LINE	
SANITARY SEWER LINE	· · · · · · · · 8 S
GAS LINE	- fs
ELECTRIC UNDERGROUND CABLE	• — E —
ELECTRIC UNDERGROUND CABLE	
	::::::::::
TRAVELED WAY GUARD RAIL	
TRAVELED WAY GUARD RAIL RETAINING WALL	
TRAVELED WAY GUARD RAIL RETAINING WALL RAILROADS	
TRAVELED WAY GUARD RAIL RETAINING WALL	
TRAVELED WAY GUARD RAIL RETAINING WALL RAILROADS	
TRAVELED WAY GUARD RAIL RETAINING WALL RAILROADS	

LEVEE OR	EMB.	ANKI	IEN?	٠			 	 	THE STATE OF		THE MARKET	A DEA BLOCK
BRIDGES												_
CULVERTS									F			- 1
DROP INLE	г						 	 	. —			- 1
POWER POI	ES .						 	 				-
TELEPHONE												Ī
TELEPHONE	OR	TEL	EGR.	APH	LIN	NES	 	 	Ţ	T/I		
HEDGE												~~
TREES									· 10 C	3 13	~~~	n
HEAVY WO										~~~	~~	. ~
GROUND EI									- DATU	, ,,	77:	3
GRADE ELE									- DATO	e int		_

THE COMPLETE ELECTRONIC PDF VERSION OF THE PLAN ASSEMBLY AS AWARDED, HAS BEEN <u>SEALED AND SIGNED</u> USING DIGITAL SIGNATURES AND THE OFFICIAL PLAN ASSEMBLY IN ELECTRONIC FORMAT IS STORED IN THE VDOT CENTRAL OFFICE PLAN LIBRARY, INLCUDING ALL SUBSEQUENT REVISIONS, WILL BE THE OFFICIAL CONSTRUCTION PLANS. FOR INFORMATION RELATIVE TO ELECTRONIC FILES AND LAYERED PLANS, SEE THE GENERAL NOTES.

DESIGN FEATURES RELATING TO CONSTRUCTION OR TO REGULATION AND CONTROL OF TRAFFIC MAY BE SUBJECT TO CHANGE AS DEEMED NECESSARY BY THE DEPARTMENT.

THIS PROJECT IS TO BE CONSTRUCTED IN ACCORDANCE WITH THE DEPARTMENT'S 2007 ROAD AND BRIDGE SPECIFICATIONS, 2008 ROAD AND BRIDGE STANDARDS, 2009 MUTCD, 2011 VIRGINIA SUPPLEMENT TO THE MUTCD, 2011 VIRGINIA WORK AREA PROTECTION MANUAL AND AS AMENDED BY CONTRACT PROVISIONS AND THE COMPLETE ELECTRONIC PDF VERSION OF THE PLAN ASSEMBLY.

ALL CURVES ARE TO BE SUPERELEVATED, TRANSITIONED AND WIDENED IN ACCORDANCE WITH STANDARD IC - 5.01R, EXCEPT

THE <u>ORIGINAL</u> APPROVED TITLE SHEET(S), INCLUDING ORIGINAL SIGNATURES, ARE FILED IN THE VDOT CENTRAL OFFICE PLAN LIBRARY, ANY MISUSE OF ELECTRONIC FILES, INCLUDING SCANNED SIGNATURES, IS ILLEGAL AND ENFORCED TO THE FULL EXTENT OF THE LAW.

Prince William County Population 402,002 (2010 Census)

STATE PROJECT	SECTION	FEDERAL AID PROJECT NO.	TYPE	UPC NO.	EQUALITIES	LENGTH I BRIDG	NCLUDING GE(S)	LENGTH E BRID	XCLUDING GE(S)	BRIDGE PROJECT	TYPE PROJECT	DESCRIPTION	
NO.		THOUSE THOS	CODE	NO.	FEET	FEET	MILES	FEET	MILES	NO.	THOOLET		
	P-101	HSIP-5A01(047)	SFTY	94105	N/A	37.900	7.18	37,200	7.05	N/A	Prelim. Engr.	FR: 1.18 MILES S. OF DUMFRIES RD.	
900	M-501	HSIP-095-2(521)	SFTY	94105	N/A	37.900	7.18	37,200	7.05	N/A	Construction	TO: 0.18 MILES N. OF PWC PKWY	
920													
0095													
8													

Project Lengths are based on I-95 Southbound Baseline

RECOMMENDED FOR APPROVAL FOR CONSTRUCTION 6/19/12 Diane L. Mitchell DATE PROGRAMMING DIVISION DIRECTOR 6/20/12 STATE LOCATION AND DESIGN ENGINEER 6/22/12 DATE CHIEF OF PLANNING AND PROGRAMMIN

REVISED

APPROVED FOR CONSTRUCTION Malcolm T. Kerley 6/22/12 CHIEF ENGINEER DATE

	APPROVED
DATE -	DIVISION ADMINISTRATOR FEDERAL HIGHWAY ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION

Copyright 2012, Commonwealth of Virginia

0095-076-005

WHERE OTHERWISE NOTED.

